• Title/Summary/Keyword: fire hazards

Search Result 212, Processing Time 0.023 seconds

Prediction and Measurement of Flash Point and Fire Point of Aromatic Hydrocarbons (방향족탄화수소의 인화점과 연소점 측정 및 예측)

  • Ha Dong-Myeong;Han Jong-Geun
    • Journal of the Korean Institute of Gas
    • /
    • v.9 no.3 s.28
    • /
    • pp.21-26
    • /
    • 2005
  • The flash points and the fire points are one of the most important combustible properties used to determine the potential for the fire and explosion hazards of flammable substances. In this study, the flash points of aromatic hydrocarbons, were measured by using Pensky-Martens Closed Cup apparatus(ASTM-D93) and Tag Open-Cup apparatus(ASTM D 1310-86). Also the fire points of aromatic hydrocarbons, were measured by using Tag Open-Cup apparatus. The measured flash points were in good agreement with reference values. The measured fire points compared with the estimated values based on 1.23 times stoichiometric concentration. The values calculated by the proposed equation were in agreement with measured values.

  • PDF

A Numerical Study on Passengers' Evacuation in a subway station in case of Fire Occurrence (화재 발생 지하철 역사에서의 여객 대피 해석에 관한 연구)

  • Kim, Chi-Gyeom;Lee, Sung-Won;Hur, Nahm-Keon;Nam, Seong-Won
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.142-147
    • /
    • 2009
  • In the present study, a numerical simulation of passenger evacuation in a subway station was performed. Algorithm for passenger flow analysis based on DEM(Discrete Element Method) has been improved to simulate passenger flow in detailed geometry. The effect of grid density was assessed in the present study to show the advantage of using finer grid in the simulation. The method of coupling passenger flow and fire simulation has also been investigated to analyze passenger evacuation flow under fire. In this method the CO distributions in the subway station was used to assess fire hazards of passenger by means of FED(Fractional Effective Dose) model. Using the coupled algorithm a simulation for passenger evacuation flow and fire analysis were performed simultaneously in the simplified subway station. This algorithm could be used in the design of subway station for the purpose of passengers' safety in case of fire.

  • PDF

A Study on the Characteristics & Fire Hazard of Electric Range (전기레인지의 특성과 화재 위험성에 관한 연구)

  • Lee, Jung-Il;Ha, Kag-Cheon;Kim, Ji-Myong
    • Journal of the Society of Disaster Information
    • /
    • v.15 no.3
    • /
    • pp.380-390
    • /
    • 2019
  • Purpose: Recently, in addition to increase in the use of electric ranges, fires have also been increasing. Method: To find out the fire risk of induction and highlights range, looked at the structure and operation methods. Combustion tests, heat transfer tests, and ignition tests were performed on both types. Results: The highlight electric range burned the towel two minutes later, takes about 25 minutes for the residual heat to cool down after cooking, and the energy of the red color disappeared in three to four minutes and no sparks were seen. Conclusion: Experiments have shown that burn and fire hazards exist, especially if there is cracks in the top, there is a risk of fire and explosion.

A Study on the Development of a Duct-dedicated Intelligent Fire Detection System (덕트전용 지능형 화재감지시스템 개발에 관한 연구)

  • Kim, Si-Kuk;Lee, Gun-Ho;Lee, Chun-Ha;Lim, Woo-Sub
    • Fire Science and Engineering
    • /
    • v.29 no.4
    • /
    • pp.39-48
    • /
    • 2015
  • This research was done to develop a duct-dedicated intelligent fire detection system to prevent fires and minimize fire damage of the industrial duct having a high fire risk. To understand the fire hazards of the ducts, the analysis was centered on the Daegu Textile Industrial Complex, where industrial ducts are used frequently. With this in the background, dedicated fire detectors and fire alarm control panel, which can prevent fires and to minimize fire damages to the ducts, were designed and produced, after which the performance was confirmed. As a result of performance experiments, it was shown that a duct-dedicated intelligent fire detection system had excellent adaptability and temperature accuracy. Through real-time temperature monitoring of the inside of the ducts, it was confirmed that duct fires could be efficiently extinguished by stepwise control of linkage facilities according to the setting temperature.

A Study of Comparative Evaluation for High-rise Building Fire Risk by the Use of FREM (FREM을 적용한 고층건물의 화재위험도 비교평가연구)

  • 김동일;손기상;이수경
    • Fire Science and Engineering
    • /
    • v.16 no.1
    • /
    • pp.45-50
    • /
    • 2002
  • This study set its bases needed for building fire risk analysis by examining general concept and definitions of fire risk analysis, and its access methods. Upon this basis, by using a computer program FREM, we brought the type of hazards out of the fire risk assessment applied to the typical 100 high-rise buildings in and out of this country. In this process, we also sorted out the programs arising from the application of a foreign born tool to domestic conditions. the credibility of fire separations and automatic fire protection system in a building would be the two most important things in an attempt to evaluate fire risk in high-rise buildings. In addition, it is vital for the purpose of securing fire safety in high-rise buildings that the systems should be properly installed and carefully maintained. When we try hard to study the evaluation standards to the above systems and, someday in the future, to employ them in evaluating fire risks in high-rise buildings, we can measure the risks much more precisely with less expenses than that we needed today.

An Application of Evacuation Model for Rail Passenger Car (철도차량에 대한 피난모델 적용)

  • Kim, Jong-Hoon;Kim, Woon-Hyung;Lee, Duck-Hee;Jung, Woo-Sung
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.123-128
    • /
    • 2007
  • To predict the fire and smoke hazards of rail car with a evacuation model is essential for achieving life safety of all passengers in the event of fire. Currently, more than 30 different evacuation models are available and expected increasing demand in high population density areas as a metro train station. This paper includes brief history of evacuation models and review some key factors of design egress scenario, these are pre-movement time, egress route, location of fire, overturned carriage, and configuration of rail car. Applying the egress model for rail passenger car, users need to confirm the model's ability of physiological, psychological responses effecting to pre-movement time of individual or crowd unit, representation of complexity of carriage layout, and evaluation of effects of smoke.

  • PDF

Prediction of Explosion Limits of Organic Halogenated Hydrocarbons by Using Heat of Combustions (연소열을 이용한 유기할로겐화탄화수소류의 폭발한계의 예측)

  • Ha, Dong-Myeong
    • Fire Science and Engineering
    • /
    • v.26 no.4
    • /
    • pp.63-69
    • /
    • 2012
  • Explosion limit is one of the major combustion properties used to determine the fire and explosion hazards of the flammable substances. In this study, the lower explosion limit (LEL) and upper explosion limit (UEL) of organic halogenated hydrocarbons were predicted by using the heat of combustion and chemical stoichiometric coefficients. The calculated explosion limits by the proposed equations agreed with literature data within a few percent. From the given results, using the proposed methodology, it is possible to predict the explosion limits of the other organic halogenated hydrocarbons.

A Case Study on the Risk Assessment for Offshore Plant Solid Desiccant Dehydration Package by using HAZOP (HAZOP을 통한 해양플랜트 흡착식 탈수공정 패키지의 위험성평가 및 안전도 향상 방안)

  • Noh, Hyonjeong;Park, SangHyun;Cho, Su-gil;Kang, Kwangu;Kim, Hyungwoo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.4_2
    • /
    • pp.569-581
    • /
    • 2020
  • Since the dehydration packages of offshore plant deal directly with oil & gas, there is a great risk of fire and explosion during operation. Therefore, this study performed risk assessment through HAZard & OPerability (HAZOP) for solid desiccant dehydration package that can remove water component of natural gas in offshore floating liquefied natural gas (LNG) production facilities below 0.1 ppmv. The risk matrix was determined by dividing the likelihood and the severity into five levels separately by asset, life, environment and reputation. The piping & instrumentation diagram (P&ID) of the dehydration package was divided into 9 nodes. Total 22 deviations were assessed in consideration of the adsorption and desorption conversion cycle. A risk assessment based on deviations revealed 14 major hazards. Three representative types of hazards were open/close failure of the control valve, control failure of the heater, and abnormal operation of the regeneration gas cooler. Finally, we proposed the installation of additional safety devices to improve safety against these major hazards, such as safety instrumented functions, alarms, etc.

Research on Characteristics of Arcing Circuit and Evaluation of Societal Cost caused by AFCI Installation (아크 회로의 특성 분석 및 AFCI 설치로 인한 사회적 비용평가에 관한 연구)

  • Park, Chee-Hyun;Bae, Suk-Myeong;Lim, Yong-Bae;Kim, Gi-Hyun;Choi, Myung-Il
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.8
    • /
    • pp.144-150
    • /
    • 2007
  • As usage of electric power is increased, the electric fire accident occurrences are growing, too. According to statistics it can be known that electric fire occupies the most weight. However, the method that can detect electric fire accurately is not being developed yet. This paper analyzes the cause of electric fire and the characteristics of Arc Fault Circuit Interrupter(AFCI). First this paper compares AFCI with existing molded-case circuit breaker and finds the hazards caused by arc through power calculation and compares with danger by short circuit. And we suggest the necessity of AFCI through studying relationship of AFCI installation and societal cost.

Fire and Explosion Hazards and Safety Management Measures of Waste Plastic-to-Pyrolysis Oil Conversion Process (폐플라스틱 열분해 유화 공정의 화재·폭발 위험성 및 안전관리 방안)

  • Dong-Hyun Seo;Yi-Rac Choi;Jin-Ho Lim;Ou-Sup Han
    • New & Renewable Energy
    • /
    • v.19 no.3
    • /
    • pp.22-33
    • /
    • 2023
  • The number of fire and explosion accidents caused by pyrolysis oil and gas at waste plastic pyrolysis plants is increasing, but accident status and safety conditions have not been clearly identified. Therefore, the aim of the study was to identify the risks of the waste plastic pyrolysis process and suggest appropriate safety management measures. We collected information on 19 cases of fire and explosion accidents that occurred between 2010 and 2021 at 26 waste plastic pyrolysis plants using the Korea Occupational Safety and Health Agency (KOSHA) database and media reports. The mechanical, managerial, personnel-related, and environmental problems within a plant and problems related to government agencies and the design, manufacturing, and installation companies involved with pyrolysis equipment were analyzed using the 4Ms of Machines, Management, Man, and Media, as well as the System-Theoretic Accident Model and Processes (STAMP) methodology for seven accident cases with accident investigation reports. Study findings indicate the need for establishing legal and institutional support measures for waste plastic pyrolysis plants in order to prevent fire and explosion accidents in the pyrolysis process. In addition, ensuring safety from the design and manufacturing stages of facilities is essential, as are measures that ensure systematic operations after the installation of safety devices.