• Title/Summary/Keyword: fire effects

Search Result 860, Processing Time 0.028 seconds

Fire Suppression Effect of PPV with Water Mist System (미세물분무를 이용한 PPV의 화재진압효과)

  • Kim, Sung-Won;Shin, Chang-Sub
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.4
    • /
    • pp.71-77
    • /
    • 2003
  • To inject fresh air into a fire room, Positive Pressure Ventilation (PPV) can be used and the blower of PPV increases inside pressure of the room. It makes high flow rate of products of combustion, smoke and heat from the structure, and it is very helpful to fireman on the fire extinguishing work. The flame moves to the direction of airflow and the temperature of flame can be decreased rapidly. In this experiment, a water mist system is applied to PPV to increase the effectiveness, and various effective factors are studied. n-Heptane and pine wood stick were used as fuel. Temperatures at the above and behind the combustion pan were strongly reduced by the water mist system and by the convective cooling with airflow. The smoke density was also decreased by PPV with water mist system and it can be explained by the absorption of smoke particles on the water mist droplet and by the strong exhausting effects of mobile fan.

Preventive Priority Methods Based on the Analysis of Fire Accident Causes in Construction Site (건설현장 화재 발생 요인 분석에 따른 예방우선순위 연구)

  • Kim, Hee-su;Jang, Sang-chul;Joo, Jin-gyu
    • Journal of the Korea Institute of Construction Safety
    • /
    • v.2 no.2
    • /
    • pp.50-55
    • /
    • 2019
  • Currently, safety management is becoming important at domestic construction sites. Despite the importance of safety management, accidents at construction sites are steadily increasing. Fire accidents among safety accidents cause not only negative effects on schedule delay or work plans at construction sites, but also huge casualties. Therefore, the purpose of this research is to extract the causes of fire at the construction site through the case of fire at the construction site, and to prioritize prevention through the analysis of the factors to contribute to the prevention of fire. As a research method, we select fire factors through case, conduct surveys through expert group, and analyze survey through AHP technique. The results of the AHP analysis of the survey of expert groups showed that the workers and their sub-item ranked high. Therefore, the priority for fire prevention was given, and this research is believed to help prevent fire.

A Study on the Fire Resistance of yLRC Composite Columns with Steel Sheet Forms and Angles (강재 영구거푸집을 사용한 yLRC 합성기둥의 내화성능 연구)

  • Kim, Bo Ram;Kang, Seong Deok;Kim, Hyung Geun;Kim, Myeong Han;Kim, Sang Dae
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.3
    • /
    • pp.365-375
    • /
    • 2008
  • The main objective of this paper is to study the behaviour of yLRC composite columns at elevated temperatures by experimental test. The effects of load ratios, cross-section size and fire protection for the yLRC columns were investigate d by the test and compared using the heat transfer analysis perfo rmed based on the finite element program ANSYS 10.0 using the ISO834 standard fire curve, following the main guidelines proposed by the EC4 Part 1.2. As heat transfer is the movement of heat by conduction, convection, and radiation, and as temperature inside an object varies by position and time, time. As the steel's thermal conductivity is higher than that of concrete, steel loses its strength rapidly in a high-temperature situation such as a fire. Fire resistance performance of the yLRC composite column under fire conditions was evaluated througheat transfer analysis for parametric study.

Countermeasure against Fire Disaster in Regional Heritage Villages on the Concept of ICT-Based Disaster Prevention Design

  • Park, Sun-Gyu;Mishima, Nobuo;Noh, Hwang-Woo;Yoo, Jae-Soo;Oh, Sang-Hoon;Min, Byung-Won;Oh, Yong-Sun
    • International Journal of Contents
    • /
    • v.11 no.1
    • /
    • pp.62-68
    • /
    • 2015
  • Many severe earthquakes have occurred along the main fault lines in the world. In recent years, there has been a high incidence of small- and large-scale earthquakes in our country. These occurrences of earthquakes have become increasingly serious, owing to a degrading earth environment. An earthquake, in general, causes far more serious damages like disruptions in electricity or gas facilities, and fire disasters from its annexed effects than by its vibrations or the shock itself. In this paper, we present a countermeasure and its necessity in safeguarding against fire disasters in regional heritage villages such as "Asan Oeam," "Jeonju Hanok," and "Andong Hahoe." A more systematic and effective strategy for prevention systems against severe fire disasters is proposed after performing various related investigations and analyses of existing domestic and international systems. We investigated the existing fire security systems and their historical records with the tendency of earthquake occurrences in these three folk villages. In this proposal, we present a strategic approach for safeguarding against fire damages in our regional heritage villages derived from ICT (information communication technology)-based DPD (disaster prevention design), after examining the laws and regulations of fire-prevention strategies in Japan, America, and Europe.

Temperature distribution in a full-scale steel framed building subject to a natural fire

  • Wald, Frantisek;Chladna, Magdalena;Moore, David;Santiago, Aldina;Lennon, Tom
    • Steel and Composite Structures
    • /
    • v.6 no.2
    • /
    • pp.159-182
    • /
    • 2006
  • Current fire design codes for determining the temperature within the structural elements that form part of a complete building are based on isolated member tests subjected to the standard fire. However, the standard time-temperature response bears little relation to real fires and doesn't include the effects of differing ventilation conditions or the influence of the thermal properties of compartment linings. The degree to which temperature uniformity is present in real compartments is not addressed and direct flame impingement may also have an influence, which is not considered. It is clear that the complex thermal environmental that occurs within a real building subject to a natural fire can only be addressed using realistic full-scale tests. To study global structural and thermal behaviour, a research project was conducted on the eight storey steel frame building at the Building Research Establishment's Cardington laboratory. The fire compartment was 11 m long by 7 m wide. A fire load of $40kg/m^2$ was applied together with 100% of the permanent actions and variable permanent actions and 56% of live actions. This paper summarises the experimental programme and presents the time-temperature development in the fire compartment and in the main supporting structural elements. Comparisons are also made between the test results and the temperatures predicted by the structural fire Eurocodes.

Analysis of Factors Influencing Fire Damage to Concrete Using Nonlinear Resonance Vibration Method (비선형 공진기법을 이용한 콘크리트의 화재 손상 영향인자 분석)

  • Park, Gang-Kyu;Park, Sun-Jong;Yim, Hong Jae;Kwak, Hyo-Gyoung
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.2
    • /
    • pp.150-156
    • /
    • 2015
  • In this study, the effects of different mix proportions and fire scenarios (exposure temperatures and post-fire-curing periods) on fire-damaged concrete were analyzed using a nonlinear resonance vibration method based on nonlinear acoustics. The hysteretic nonlinearity parameter was obtained, which can sensitively reflect the damage level of fire-damaged concrete. In addition, a splitting tensile strength test was performed on each fire-damaged specimen to evaluate the residual property. Using the results, a prediction model for estimating the residual strength of fire-damaged concrete was proposed on the basis of the correlation between the hysteretic nonlinearity parameter and the ratio of splitting tensile strength.

Estimation of FDS Prediction Performance on the Operation of Water-Mist (미세물분무 작동에 대한 FDS 예측 성능 평가)

  • Ko, Gwon Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.8
    • /
    • pp.4809-4814
    • /
    • 2014
  • The aim of the present study was to estimate the prediction performance of a FDS (Fire Dynamic Simulator) to simulate the fire behaviors and suppression characteristics by operating a water-mist. Rosin-Rammler/log-normal distribution function was used to determine the initial droplet distribution of water-mist and the effects of its model constant were considered. In addition, the simulation models were validated by a comparison of the predicted fire suppression characteristics with water-mist injection pressures to the previous experiments, and the thermal flow behaviors and gaseous concentration variations were analyzed. The results showed that water-mists with the same mean diameter were affected by the characteristics of the droplet size distribution, which have different size and velocity distributions at the downstream location. The fire simulations conducted in this study determine the initial droplet size distribution tuned to the base of the spray characteristics measured by previous experiments. The simulation results showed good agreement with the previous measurements for temperature variations and fire suppression characteristics. In addition, it was confirmed that the FDS simulation with a water-mist operation supplies useful details on estimations of the thermal flow fields and gaseous concentration under water mist operation conditions.

Influences of Recovery Method and Fire Intensity on Coleopteran Communities in Burned Forests (산불지 복원방법과 산불강도가 딱정벌레군집에 미치는 영향)

  • Kwon, Tae-Sung;Park, Young-Kyu;Lee, Cheol-Min
    • Korean journal of applied entomology
    • /
    • v.50 no.4
    • /
    • pp.267-278
    • /
    • 2011
  • This study was conducted to estimate the effects of fire intensity and recovery methods on coleopteran communities in three burned forests, Goseong, Gangneung, and Samcheok in Gangwon province, Korea. Four sampling sites were selected in each study area according to disturbance degree (DD) caused by fire intensity and recovery methods. DD in the study sites were categorized as 0 (no fire), 1 (weak fire), 2 (strong fire), and 3 (strong fire followed by human disturbance). Beetles collected by pitfall traps were classified into 3 functional guilds: detritivore, herbivore, and carnivore. Diversity and abundance were slightly higher in the burned sites (DD = 1-3) than in the unburned sites (DD = 0), although there was no statistical significance. Coleopteran communities differed according to fire intensity and recovery method. This suggests that recovery of burned forests using both natural recovery and reforestation may increase the diversity of coleopteran communities.

FIRES IN REAL SCENARIOS

  • Ghosh, B-K
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 1997.11a
    • /
    • pp.439-449
    • /
    • 1997
  • Studies have been carried out to determine the effect of sprinklers on fires typical of a number of occupancies including simulated of office furniture, supermarkets, carpet displays, libraries, video stores and liquor stores. After surveys of actual fire loads, the experiments were conducted in a specially designed sprinklered fire-calorimeter with a collecting hood 6 m x6 m leading to a vertical duct 1 m in diameter. Details of the rig are given elsewhere [1]. Only well ventilated fires were studied. Rate of heat release and production of various toxic chemicals were monitored during the tests. Both sprinklered and unsprinklered fires were used. The results were used to establish the unsprinklered burning behaviour and the fire-control effects of sprinklers. Before sprinkler operation, the rate of fire growth could be modelled as 12_fires as given in NFPA 92B (1991 Edition) [2]. It was found that operation of sprirnklers controlled but did not extinguish the fires. This was expected as parts of the fire load were shielded from the spray. Also there were significant increases in the concentration of carbon monoxide when the sprinklers operated. Sprinklers had little effect on the concentrations of other toxic products measured. The results from the tests were extrapolated to large single storey buildings for the same occupancy classes and the results used to compare the required and the available escape times for different occupancies, particularly whether the use of sprinklers would improve the chances of escape from those premises. It was found that in most of the cases studied, adequate escape times will be available without any special measures. For very rapid fire growths, however, special measures, such as availability of trained staff may be needed. Standard response sprinklers will have little impact.

  • PDF

A study of the Effects of Siberian Wildfires on Ozone Concentrations over East Asia in Spring 2003 (시베리아 산불이 2003년 봄철 동아시아 오존 농도에 끼치는 영향 연구)

  • Park, Rokjin;Jeong, Jaein;Yun, Daeok
    • Atmosphere
    • /
    • v.19 no.3
    • /
    • pp.227-235
    • /
    • 2009
  • Global climate warming induced by long-lived greenhouse gases is expected to cause increases in wildfire frequencies and intensity in boreal forest regions of mid- and high-latitudes in the future. Siberian forest fires are one of important sources for air pollutants such as ozone and aerosols over East Asia. Thus an accurate quantification of forest fire influences on air quality is crucial, in particular considering its higher occurrences expected under the future warming climate conditions. We here use the 3-D global chemical transport model (GEOS-Chem) with the satellite constrained fire emissions to quantify Siberian fire effects on ozone concentrations in East Asia. Our focus is mainly on spring 2003 when the largest fires occurred over Siberia in the past decade. We first evaluated the model by comparing to the EANET observations. The model reproduced observed ozone concentrations in spring 2003 with the high $R^2$ of 0.77 but slightly underestimated by 20%. Enhancements in seasonal mean ozone concentrations were estimated from the difference in simulations with and without Siberian fires and amounted up to 24 ppbv over Siberia. Effects of Siberian fires also resulted in 3-10 ppbv incresases in Korea and Japan. These increases account for about 5-15% of the ozone air quality standard of 60 ppbv in Korea, indicating a significant effect of Siberian fires on ozone concentrations. We found however that possible changes in regional meteorology due to Siberian fires may also affect air quality. Further study on the interaction between regional air quality and meteorology is necessary in the future.