• Title/Summary/Keyword: fire effects

Search Result 860, Processing Time 0.022 seconds

An Experimental Study on the Effects of the Shape of a Drencher Head on the Characteristics of a Water Curtain (드렌처 헤드의 형상에 따른 수막특성에 관한 실험적 연구)

  • Lee, Seung-Chul;Kim, Bong-Jun;Lee, Jae-Ou;Park, Chung-Hwa;Hwang, Cheol-Hong
    • Fire Science and Engineering
    • /
    • v.30 no.3
    • /
    • pp.86-93
    • /
    • 2016
  • The effects of the shape of a drencher head on the flow characteristics and radiation attenuation of a water curtain, in order to prevent a fire spread, were experimentally studied. The distance (h) between the orifice exit and deflector and the diameter of deflector (D) were varied as the shape factors of the head, with the same orifice diameter (d). It was found that an increase in h leads to an increase in the water flow rate and spray angle. However, the change in the spray angle decreases with increasing D. Increasing D brings about a subtle increase in the water flow rate and a significant decrease in the spray angle. A larger value of D makes it possible to produce a flatter pattern of the water curtain, but reduces the uniformity of the droplets inside the spray angle. The mean droplet diameter decreases significantly as the operating pressure increases. However, the variation in the shape of the drencher head does not significantly affect the change in the mean diameter at the same operating pressure. Finally, it was found that the radiation attenuation afforded by the water curtain at the same operating pressure was affected by water flow rate and droplet uniformity, which were determined by h and D, respectively.

A Study on the Range of Damage Effects of Benzene Leakage Accidents using the KORA Program (KORA 프로그램을 활용한 벤젠 누출사고 피해영향범위에 관한 연구)

  • Cha, Jeong-Min
    • Fire Science and Engineering
    • /
    • v.33 no.4
    • /
    • pp.112-120
    • /
    • 2019
  • Benzene is a class 4 hazardous material according to the Act on the Safety Control of Hazardous Substances. This study qualitatively evaluated the damage size of a "toxic" accident and "pool fire" accidents based on benzene in a virtual scenario of a fire and leakage accident during unloading at a port facility. The KORA program was used as an evaluation method, which is supported as a universal program by the National Institute of Chemical Safety. The range of damage effects of a benzene-induced fire and leakage accident was predicted. In the case of toxic damage range, the accident's damage effect range for the "worst case scenario" was reduced by up to 5.11% with a decrease in the size of the leakage hole. In the case of the leakage time, the damage effect range increased to 145.12% with a 10 min leakage time compared to that of a 5 min leakage time and went up to 20 min (212.29%) with a 20 min leakage time. In the case of pool-fire-induced damage, the damage effect range by radiant heat in the "worst case scenario" was 228.8 m in radius from the center of the handling facility. In the "alternative scenario," the damage effect range by radiant heat was reduced by up to 8.26% compared to that in the "worst case scenario" since the size of the leakage hole was decreased by reducing the cross-sectional area of the pipe.

A Numerical Study on the Effects of the Smoke Exhaustion on Safe Evacuation in Emergency Situations during Fires on Ships

  • Kim, Won-Ouk
    • Journal of Navigation and Port Research
    • /
    • v.37 no.1
    • /
    • pp.85-89
    • /
    • 2013
  • Sometimes, an evacuation should be executed from a ship for many reasons. This study considers on emergency evacuation on fire in a ship, one of the many reasons for evacuation. Due to the characteristic of fire, the most loss of life is known to be caused by suffocation resulted by smoke. To reduce the suffocation by smoke, the time available for evacuation should be improved for the higher survival rate of crews. In this study, crews' survival times and Evacuation time are analyzed quantitatively in during fire in the same sealed space in two different cases of the natural ventilation and the forced ventilation.

Extinguishing Characteristics of Cooking Oil Fire by Water Mist added with AFFF Agent (수성막포 약제를 첨가한 미분무수의 식용유 화재 소화특성)

  • Shin, Chang-Sub;Kim, Seong-Yong
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.5
    • /
    • pp.21-27
    • /
    • 2009
  • Effective way of cooking oil fire extinguishment is using water mist system which has cooling and smothering effects. Low pressure water mist system has advantage because it is compatible with existing sprinkler systems. To increase the effectiveness of low pressure water mist system, additives can be used which increase the momentum of water particle and the chemical effect. In this experiment, aqueous film forming form(AFFF) agent is used as additive and the effect of additive concentration and water pressure are experimented. For the extinguishment of cooking oil fire such as soybean and olive oils, AFFF agent is effective and can decrease the fire extinguishing time and water consumption.

Numerical Study on the Effects of Design Parameters on the Spray Characteristics of Fire Suppression Nozzles (소화노즐의 분무특성에 대한 설계 변수 영향의 수치해석적 연구)

  • Lee, C.H.;Choi, B.I.;Han, Y.S.;Kim, C.;Chung, H.T.
    • Journal of ILASS-Korea
    • /
    • v.11 no.4
    • /
    • pp.199-204
    • /
    • 2006
  • Numerical investigation has been performed to simulate the spray characteristics in mist-spray fire suppression nozzles in sense of design parameters. Two key shape factors in nozzle orifices. i.e. diameter and length are chosen as simulation parameters. Commercial softwares, FLUENT and FDS with the proper modelings were applied as numerical tools. Main performances of nozzles, i.e., K-factors, spray angles, droplet size, jet velocities and fire suppression time are analyzed for each parameter to find optimal design conditions.

  • PDF

A Study on the Effects of Fire According to Choice of Materials for Finishing Interior of buildings (건축물 내장 재료 선택에 따른 화재 파급 효과에 관한 연구)

  • 김경섭
    • Fire Science and Engineering
    • /
    • v.10 no.1
    • /
    • pp.10-24
    • /
    • 1996
  • Recently as urban buildings become higher and deeper by reason of economic growth and concentration of population into cities, the supporting technology becomes largely advanced and many buildings have been constructed making use of new materials and structure methods. As these large buildings accomodate large population and its insides are variously used for uses, disasters in buildings have been growing day by day. One of the main reasons of the disasters are the varity of building functions. Among the disasters, the damages by fire accidents become very serious as losses of lives and property become increasing. Here, although there shoule be many other ways to minimize these disasters, 1 would review choice of interior materials of buildings and improvement of blind points and week points in construction methods for the purpose.

  • PDF

Utilizing GIS for Forecasting Fire Risk Cumi city (구미지역 산불위험도 예측을 위한 지리정보시스템의 활용)

  • Lee, Jin-Duk;Han, Seung-Hee;Sim, Jung-Bo
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2010.04a
    • /
    • pp.371-373
    • /
    • 2010
  • Gumi is surrounded by mountains and Provincial parks are located. A high risk of forest fires that cause the spread of damage effects, and is forecast to have forest fire prevention and Geumohsan Provincial Park to preserve the target Gumi analysis was likely to cause fires. Numerical analysis to the probability of fire, clinical way, even in land cover, using Arc Gis aspect, altitude, slope, watersheds, vegetation, soil characteristics were extracted. Logistic analysis to extract the data in pixels by dividing the number analysis of forest fire risk indices presented in Gumi.

  • PDF

Research on a Fire Detection and a Guide System in Building on the base of Sensor Network (도시건물의 센서네트워크환경의 방재 및 피난대피 유도시스템에 관한 연구)

  • Kwon, Chang-Hee
    • 한국디지털정책학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.333-339
    • /
    • 2007
  • To preventand minimize damages from disaters, it is necessary to build a fire detection or a guide system that can gather and organize proper information and that can analyze about disasters. This research aims at suggestion of fire detection and guide system in building on the base of sensor network. To do so, it examines the effects of this suggesting model system based urban disaster management system.

  • PDF

A Study on Fire Recognition Algorithm Using Deep Learning Artificial Intelligence (딥러닝 인공지능 기법을 이용한 화재인식 알고리즘에 관한 연구)

  • Ryu, Jin-Kyu;Kwak, Dong-Kurl;Kim, Jae-Jung;Choi, Jung-Kyu
    • Proceedings of the KIPE Conference
    • /
    • 2018.07a
    • /
    • pp.275-277
    • /
    • 2018
  • Recently, the importance of an early response has been emphasized due to the large fire. The most efficient method of extinguishing a large fire is early response to a small flame. To implement this solution, we propose a fire detection mechanism based on a deep learning artificial intelligence. In this study, a small amount of data sets is manipulated by an image augmentation technique using rotating, tilting, blurring, and distorting effects in order to increase the number of the data sets by 5 times, and we study the flame detection algorithm using faster R-CNN.

  • PDF

A Study on the loading test for of slab by Fire damaged (화재피해를 입은 RC 슬래브의 재하실험에 관한 연구)

  • Lee, Kyu Min;Kang, Seung Goo;Kim, Dong Jun;Kwon, Young Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.50-51
    • /
    • 2013
  • In case of Korea, it goes frequently that underground parks has been burned. Based on standard temperature time curve(ISO-834), gerber, walls, slab of structures are constructed. However, Standard temperature time Curve is not considered that buildings are affected by vehicle fire. that is why it has the hazard that makes building reinforcement feeble. Based on the result that got from vehicle experiment before, we made four RC slab in this experiment and set the fire severity. according to the loading experiment after heating, we measured the effects that makes reinforcement and shape changes. Furthermore, we examined the safty of the structure by comparing before and after heating.

  • PDF