• Title/Summary/Keyword: fire curve

Search Result 200, Processing Time 0.024 seconds

The combustion test of assuming in parking space for fire resistance (지하주차장의 내화성능 평가를 위한 차량연소실험)

  • Kang, Seung Goo;Kim, Dong Jun;Lee, Jae Young;Harada, Kazunori;Kwon, Young Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.05a
    • /
    • pp.48-50
    • /
    • 2013
  • In this study, Car fire for test using ISO 9705 10MW Large Scale Calorimeter. Especially, study on the underground parking for the fire resistance performance. The underground parking lot of the fire resistance regulations in according to with the standard heating curve in Korea. Because of this burning car through experiments to the propose a new heating curve.

  • PDF

Evaluation of Modified Design Fire Curves for Liquid Pool Fires Using the FDS and CFAST (FDS와 CFAST를 이용한 액체 풀화재의 수정된 디자인 화재곡선 평가 연구)

  • Baek, Bitna;Oh, Chang Bo;Lee, Chi Young
    • Fire Science and Engineering
    • /
    • v.32 no.2
    • /
    • pp.7-16
    • /
    • 2018
  • In this study, the previous design fire curve for fire simulation was modified and re-suggested. Numerical simulations with the FDS and CFAST were performed for the n-heptane and n-octane pool fires in the ISO 9705 compartment to evaluate the prediction performances of the previous 1-stage and modified 2-stage design fire curves. The numerical results were compared with the experimental temperature and concentrations of $O_2$ and $CO_2$. The FDS and CFAST simulations with the 2-stage design fire curve showed better prediction performance for the variation of temperature and major species concentration than the simulations with 1-stage design fire curve. Especially, the simulations with the 2-stage design fire curve agreed with the experimental temperature more reasonably than the results with the 1-stage design fire curve. The FDS and CFAST simulations showed good prediction performance for the temperature in the upper layer of compartment and the results with the FDS and CFAST were similar to each other. However, the FDS and CFAST showed poor and different prediction performance for the temperature in the lower layer of compartment.

Simplified Evaluation Method for Residual Bond Strength of Reinforced Concrete Using Standard Fire Curve (표준화재곡선을 이용한 잔존부착강도 평가 간략방법 제안)

  • Moon, Do-Young
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.5
    • /
    • pp.41-47
    • /
    • 2010
  • For the enhancement of structural safety of thermally damaged reinforced concrete structure, rapid evaluation of damage in the structure is very important. This study addresses a simplified method which is equivalent to the standard fire curve (ISO 834) for the residual bond strength evaluation. In the proposed method, a exposure duration as well as the maximum temperature can be considered. For the comparisons with conventional methods, concrete properties obtained from the report of Daegu subway fire accident were referred and the results support the applicability of the proposed method in this study.

Influence of softening curves on the residual fracture toughness of post-fire normal-strength concrete

  • Yu, Kequan;Lu, Zhoudao
    • Computers and Concrete
    • /
    • v.15 no.2
    • /
    • pp.199-213
    • /
    • 2015
  • The residual fracture toughness of post-fire normal-strength concrete subjected up to $600^{\circ}C$ is considered by the wedge splitting test. The initial fracture toughness $K_I^{ini}$ and the critical fracture toughness $K_I^{un}$ could be calculated experimentally. Their difference is donated as the cohesive fracture toughness $K_I^c$ which is caused by the distribution of cohesive stress on the fracture process zone. A comparative study on determining the residual fracture toughness associated with three bi-linear functions of the cohesive stress distribution, i.e. Peterson's softening curve, CEB-FIP Model 1990 softening curve and Xu's softening curve, using an analytical method is presented. It shows that different softening curves have no significant influence on the fracture toughness. Meanwhile, comparisons between the experimental and the analytical calculated critical fracture toughness values further prove the validation of the double-K fracture model to the post-fire concrete specimens.

Evaluation on the Thermal Damage of Steel Embedded in Concrete in Tunnel Fire(Modified Hydrocarbon Curve) (터널 화재(Modified Hydrocarbon Curve)시콘크리트에 매입된 강재의 열적 손상 평가)

  • Park, Kyoung-Hoon;Kim, Heung-Yeol;Kim, Hyung-Jun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.485-488
    • /
    • 2008
  • Fire intensity in tunnel fire is very severe, which might cause the spalling on the surface of shotcrete and concrete lining exposed to the heat as well as rapidly-reducing stress due to heat transfer by steel material such as anchor embedded in tunnel which plays the critical role in securing the stability of the tunnel. In this study, a fire test to identity the heat intensity(Modifired Hydrocarbon Curve) and the fire resistance of steel materials embedded as parameters, was carried out. And the evaluation to identify the thermal damage, which was based on critical temperature range for thermal damage of steel materials determined according to the road tunnel fire resistance standard established by ITA(International Tunneling Association).

  • PDF

Time-Temperature Curve for Fire Safety Assessment of Metropolitan Transit Tunnels (도시철도 터널구조체의 내화안정성 평가를 위한 표준시간-온도곡선 적용)

  • Won, Jong-Pil;Choi, Min-Jung;Lee, Su-Jin;Lee, Sang-Woo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.3
    • /
    • pp.118-122
    • /
    • 2010
  • The study presents a standard time-temperature curve to evaluate the fire performance of subway tunnel structures. The central subway section is 135km long in Korea, the fourth longest in the world. The number of subway tunnels has been increasing rapidly and fire risk is proportional to the tunnel length. However, an adequate time-temperature curve for subway tunnel fires does not exist. Therefore, we studied a proposed foreign fire design model for which the heat rate is based on the traffic, and we present an appropriate time-temperature curve for Korean subway tunnels. The ISO 834 curve was used as a fire design model and the temperature distribution in the tunnel was estimated using numerical analysis. This led to a proposal for effective measures against subway tunnel fires.

Prediction of Fire Curves Considering the Relationship between Mass Increase and Combustion Time of Combustibles (연소물의 질량증가와 연소시간의 상관관계를 고려한 화재곡선 예측)

  • Eun-Joon Nam;Tae-Il Lee;Goang-Seup Zi
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.2
    • /
    • pp.9-16
    • /
    • 2024
  • In this paper, we aimed to convert the fire curve in volume units to a fire curve per unit area for application in the Fire Dynamic Simulator (FDS) surface heat release rate method. The fire curve was expressed dimensionlessly considering the total combustion characteristic time, and improvements were made to represent the appropriate ratios for the growth , steady, and decay phases concerning the fire intensity. Additionally, a correction function for combustion characteristic time varying with mass increase was derived. Also to control the growth time values according to the increase in mass, a function to correct the growth phase ratio was derived. Consequently, utilizing existing data, a formula was established to determine the reference mass for combustion materials and predict the fire curve based on mass increase.

P-M interaction curve for reinforced concrete columns exposed to elevated temperature

  • Kang, Hyun;Cheon, Na-Rae;Lee, Deuck Hang;Lee, Jungmin;Kim, Kang Su;Kim, Heung-Youl
    • Computers and Concrete
    • /
    • v.19 no.5
    • /
    • pp.537-544
    • /
    • 2017
  • The strength and deformational capacity of slender reinforced concrete (RC) columns greatly rely on their slenderness ratios, while an additional secondary moment (i.e., the $P-{\delta}$ effect) can be induced especially when the RC column members are exposed to fire. To evaluate the fire-resisting performances of RC columns, this study proposed an axial force-flexural moment (i.e., P-M) interaction curve model, which can reflect the fire-induced slenderness effects and the nonlinearity of building materials considering the level of stress and the magnitude of temperature. The P-M interaction model proposed in this study was verified in detail by comparing with the fire test results of RC column specimens reported in literature. The verification results showed that the proposed model can properly evaluate the fire-resisting performances of RC column members.

Fire Resistance Test of Steel Fiber Reinforced Concrete (강섬유보강콘크리트의 내화성에 관한일실험)

  • 윤재환
    • Fire Science and Engineering
    • /
    • v.1 no.1
    • /
    • pp.19-26
    • /
    • 1987
  • In this study, fire resistance of steel fiber reinforced concrete was investigated Cylindrical and prismatic specimens made of Ordinary Portland Cement plain concrete and steel fiber reinforced concrete were exposed to heating in accordance with a standard time-temperature curve as specified in KS·F22 57, method of fire resistance test for structural parts of buildings, the period of heating was 1 hour and 2 hours. After the fire resistance test, mechanical properties of specimens such as compressive and bending strength, stress-strain curve, static and dynamic modulus of elasticity and bending toughness were investigated. Also the cracks and spallings of the specimens were observed. From the test results, it was confirmed that steel fiber reinforced concrete has a excellent fire resistance than plain concrete in the view of higher residual strength of concrete and smaller crackings because of steel fibers in concrete.

  • PDF

Time-Temperature Curve of road tunnel for fire (도로터널 내 화재에 따른 시간-온도 가열곡선 도출)

  • Choi, Min-Jung;Jang, Chang-Il;Lee, Sang-Woo;Kim, Joon-Mo;Won, Jong-Pil
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.713-716
    • /
    • 2008
  • This study is performed to propose a standard to evaluate fire protection assessment for concrete structures during a fire on road tunnel. Recently, a number of road tunnels have been rapidly increased and fire risk also multiplyed according to extend tunnel length, due to natural features and environmentally-friendly road construction in domestic. But we have not yet been prescribed appropriate time-temperature curve for tunnel fire. Therefore we presented fire design model and investigated time-temperature curve proposed by a foreign country considering traffic, a kinds of vehicles which are a basis of heat rate.

  • PDF