• Title/Summary/Keyword: fire behavior

Search Result 594, Processing Time 0.023 seconds

Simulation of Shot Impact by a Wearable Smart Individual Weapon Mounted on a Forearm (하박 장착용 스마트 개인무장의 발사충격에 의한 인체거동 해석)

  • Koo, Sungchan;Kim, Taekyung;Choi, Minki;Kim, Sanghyun;Choi, Sungho;Lee, Yongsun;Kim, Jay J.
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.6
    • /
    • pp.806-814
    • /
    • 2019
  • One of the future weapon systems is the individual smart weapon which has a structure mounted on the forearm of soldiers. The structure may cause injuries or affect the accuracy of fire due to its impact on joints when shooting. This paper proposes human-impact interaction modeling and a verification methodology in order to estimate the impact of fire applied to the forearm. For this purpose, a human musculoskeletal model was constructed and the joints' behavior in various shooting positions was simulated. In order to verify the simulation results, an impact testing device substituting the smart weapon was made and the experiment was performed on a real human body. This paper compares the simulation results performed under various impact conditions and the experimental values in terms of accuracy and introduces methods to complement them. The results of the study are expected to be a basis for a reliable human-impact interaction modeling, and smart individual weapon development.

Evaluation of Firefighting Gloves and the Behavior Regarding their Usage, of Firefighting Officials in Seoul (서울시 소방공무원의 방화장갑에 대한 평가 및 사용실태)

  • Kim, Do-Hee;Nam, Kibum;Oh, Jung-Woo;Lee, Joo-Young
    • Fashion & Textile Research Journal
    • /
    • v.23 no.4
    • /
    • pp.515-526
    • /
    • 2021
  • This study aimed to investigate the evaluation of firefighting gloves and the behavior regarding their usage, of firefighting officials in Seoul, using a questionnaire. Responses from a total of 270 firefighters who are responsible for putting out fires or undertaking rescue works in Seoul were analyzed. As per the findings, the firefighters considered ease of hand operation and fire/flame protection as the most important performance factors for firefighting gloves, and they were satisfied with the supply status of the gloves. The average number of firefighting gloves currently owned by the firefighters was 2.6 ± 0.8 pairs. Thirty-nine percent of the respondents said that their firefighting gloves lasted, with maintained performance, for more than six months and less than a year, and when asked how they handled the gloves with degraded performance, 46% of them said that they would discard them. Sixty-eight percent of the respondents said that they used the most recently developed and supplied gloves, which they considered as the most satisfying gloves and which they mainly used these days. Respondents were highly satisfied with the fire/flame protection performance of their firefighting gloves, but were less satisfied, however, with the glove fit. These results suggest that there has been a significant improvement in the overall performance level and supply status of the firefighting gloves. Given the current situation, careful considerations with flexible approaches are needed on the current firefighting gloves size system as well as on the personal protective equipment maintenance and management scheme.

A Study on the Evacuation Performance Analysis Model Considering Clustering Types at the Fire Event in Geriatric Hospital (노인 요양병원에서 화재 시 군집유형에 따른 피난 성능 분석 모델에 관한 연구)

  • Kim, Mijung;Kweon, Jihoon
    • Journal of The Korea Institute of Healthcare Architecture
    • /
    • v.28 no.1
    • /
    • pp.63-74
    • /
    • 2022
  • Purpose: The purpose of this study is to present an evacuation performance analysis model that can derive vulnerable evacuation spaces with considering the movement behavior as per the elderly groups in the event of a fire in a geriatric hospital. Methods: The evacuation characteristics of geriatric hospital users were investigated through the review of precedent studies. First, the occupant conditions and the evacuation scenario were set to analyze a study target hospital. Then, the evacuation simulation was carried out considering the group types and the density of each group. Finally, an evacuation performance analysis model according to the group type was presented based on the simulation results. Results: The results of this study are as follows: (1) The evacuation performance according to the group type is to be clarified through the suggested study model. (2) It is necessary to secure a ramp or an emergency elevator to distribute the evacuation personnel at the design stage because congestion occurs due to collisions between evacuees on the stairs and delays the evacuation time. (3) It is necessary to consider the evacuation stairs and openings of sufficient size by analyzing the frequency of congestion occurrence and the escape routes of occupants in advance to identify the space where the evacuation flow overlaps. Implications: It is expected that the study result is to be used as primary data for studies that consider the elderly and clustering evacuation behavior in the event of a fire in a geriatric hospital.

Effects of Change in Heat Release Rate on Unsteady Fire Characteristics in a Semi-Closed Compartment (반밀폐된 구획에서 발열량 변화에 따른 비정상 화재특성)

  • Hwang, Cheol-Hong
    • Fire Science and Engineering
    • /
    • v.26 no.2
    • /
    • pp.75-83
    • /
    • 2012
  • An experimental study was conducted to investigate the effects of change in heat release rate on unsteady fire characteristics of under-ventilated fire in a semi-closed compartment. A standard doorway width of the full-scale ISO 9705 room was modified to 0.1 m and the flow rate of heptane fuel was increased linearly with time using a spray nozzle located at the center of enclosure. Temperature, heat flux, species concentrations and heat release rate were continuously measured and then global equivalence ratio (GER) concept was adopted to represent the unsteady thermal and chemical characteristics inside the compartment. It was observed that there was a significant difference in unsteady behavior between global and local combustion efficiency, and the GERs predicted by ideal and measured heat release rate were also shown different results in time. The unsteady behaviors of temperature, heat flux and species concentrations were represented well using the GER concept. It was important to note that CO concentration was gradually decreased with the increase in GER after reaching its maximum value in the range of 2.0~3.0 of global equivalence ratio. In addition, the experimental data on unsteady thermal and chemical behaviors obtained in a semi-closed compartment will be usefully used to validate a realistic fire simulation.

Experimental Studies on the Effect of Various Design Parameters on Thermal Behaviors of High Strength Concrete Columns under High Temperatures (다양한 설계변수에 따른 고강도 콘크리트 기둥의 열적 거동 분석을 위한 실험 연구)

  • Shin, Yeong-Soo;Park, Jee-Eun;Mun, Ji-Young;Kim, Hee-Sun
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.3
    • /
    • pp.377-384
    • /
    • 2011
  • Although concrete is considered as fire proof materials, high strength concrete shows severe material and structural damages when exposed to fire. To understand such damages in high strength concrete structures, the effects of various design parameters and fire condition on the thermal behaviors of high strength concrete structures are investigated in this study. In order to achieve this goal, fire tests are performed on high strength concrete columns with different fire conditions and design parameters including cross sectional area, cover thickness, and reinforcement alignment. To investigate thermal behaviors, temperature distributions and amount of spalling are measured. In overall, the columns show rapidly increasing inner temperatures between 30~60 mins of the fire tests due to spalling. In detail, the higher temperature distributions are observed from the columns with the larger cross section and less cover thickness. Moreover, among the columns with same reinforcing ratio, larger number of reinforcements with the smaller diameter causes the higher temperature distribution. The findings from the experimental study allow not only understanding of thermal behaviors of high strength concrete columns under fire, but also guidance in revising fire safety design.

A Study on the External Evacuation System for Large-scale Fire of Multi-use Facilities (다중밀집시설 대형화재 외부대피 체계에 관한 연구)

  • Kim, Jung-Gon;Jeong, Min-Su;Jung, Jae-Wook
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.1
    • /
    • pp.129-145
    • /
    • 2022
  • Purpose: This study aims at preparing an external evacuation system by setting up situation that may occur outside buildings in case of large-scale fire at buildings such as multiuse facilities and presenting appropriate response procedures and action instructions for evacuees and facility managers. Method: Major matters are summarized based on various situations which may occur outside in case of fire and the contents of fire manual. Necessary factors including risk alert standards in the event of fire and the role of building occupants are classified and then important issues are summarized. In addition, the definition of fire-related outside shelters and external evacuation routes are showed, and then the applicability to the shelters and the routes are reviewed for old apartments in Jung-gu among multi-dense facilities. Result: Four stages (attention, caution, alert, serious) for standards of fire risk warning are established with the results of the investigation and analysis, and guidelines for behavior for evacuees, facility owners, residents, managers are summarized and presented. In addition, the concept and role of external shelters are divided into primary to the third shelters, and matters related to the definition of each shelter and the establishment of evacuation routes are presented, and then considered them carefully. Conclusion: This study has highlighted the importance of suggesting a systematic plan to secure the safety for evacuees outside space of buildings with disorder and difficulty to control in the event of fire. Therefore, we are confident that it will be useful in making an integrated manual for inside and outside buildings.

Study on Subjectivity of Fire Fighter (소방공무원의 주관성에 관한 연구)

  • Kim, Jee-Hee;Lee, Jei-Young;Kim, Dong-Ok;Hyun, Hye-Jin;Byeon, Do-Hwa;Rho, Sang-Gyun;Lee, Jung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.10
    • /
    • pp.4475-4483
    • /
    • 2011
  • This study was carried out by practical method in a subjectivity study accessible in-depth, in sloughing off old habit of functional quantity analysis about a subjectivity of fire-public servant in nation. The perception pattern come out in this study were divided into four types in Q-methodology. The result is as follows ; it is divided into 1[(N=26) : Occupational Type], 2[(N=11) : Experience Type], 3[(N=1) : Human Type], 4[(N=2) : Justice Type]. There are four types of fire fighter images. In conclusion, this study is to ascertain acceptance behavior about Reception Type on a subjectivity of fire-public servant in nation ; to offer a developmental suggestion about it.

A Theoretical Study on the Characteristics of Fire Resistance for the Concrete Filled Tubular Steel Columns (콘크리트충전 강관기둥의 내화특성에 관한 이론적 연구)

  • Chung, Kyung Soo;Choi, Sung Mo;Kim, Dong Kyu
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.4 s.33
    • /
    • pp.649-658
    • /
    • 1997
  • When steel tube as a column is filled with concrete, it is common that the load-bearing capacities of CFST(Concrete Filled Steel Tube) column are increased substantially, And the CFST column can obtain a capacity of fire resistance without any additional detail on the surface of the steel tube for fire protection. In order to clarify the behavior of CFST column during fire occurrence, a theoretical study is performed, that is, a thermal analysis is used to find temperature gradient dependent on the time on the steel tube and the infilled concrete. N-M (axial force-moment) interaction curves are summarized under the consideration for time dependent variation. The material properties of concrete and steel in accordance with a temperature variation are referred to the existing general data. Thermal transient analyses are performed by finite element method through ANSYS and then these results are verified by comparing with the existing test results. On the basis of analytical results, load-carrying capacities (N-M interaction curves) are calculated by numerical analysis method.

  • PDF

A novel prediction model for post-fire elastic modulus of circular recycled aggregate concrete-filled steel tubular stub columns

  • Memarzadeh, Armin;Shahmansouri, Amir Ali;Poologanathan, Keerthan
    • Steel and Composite Structures
    • /
    • v.44 no.3
    • /
    • pp.309-324
    • /
    • 2022
  • The post-fire elastic stiffness and performance of concrete-filled steel tube (CFST) columns containing recycled aggregate concrete (RAC) has rarely been addressed, particularly in terms of material properties. This study was conducted with the aim of assessing the modulus of elasticity of recycled aggregate concrete-filled steel tube (RACFST) stub columns following thermal loading. The test data were employed to model and assess the elastic modulus of circular RACFST stub columns subjected to axial loading after exposure to elevated temperatures. The length/diameter ratio of the specimens was less than three to prevent the sensitivity of overall buckling for the stub columns. The gene expression programming (GEP) method was employed for the model development. The GEP model was derived based on a comprehensive experimental database of heated and non-heated RACFST stub columns that have been properly gathered from the open literature. In this study, by using specifications of 149 specimens, the variables were the steel section ratio, applied temperature, yielding strength of steel, compressive strength of plain concrete, and elastic modulus of steel tube and concrete core (RAC). Moreover, parametric and sensitivity analyses were also performed to determine the contribution of different effective parameters to the post-fire elastic modulus. Additionally, comparisons and verification of the effectiveness of the proposed model were made between the values obtained from the GEP model and the formulas proposed by different researchers. Through the analyses and comparisons of the developed model against formulas available in the literature, the acceptable accuracy of the model for predicting the post-fire modulus of elasticity of circular RACFST stub columns was seen.

Fire Performance of 3D Printing Wall in Simplified Heating Test (간이 내화시험에 의한 3D 프린팅 벽체의 내화 성능에 관한 연구)

  • Kibeom Ju;Byunghyun Ryu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.11
    • /
    • pp.11-17
    • /
    • 2023
  • In recent construction research, the focus has primarily been on developing 3D printers and construction-specific materials. 3D printing technology in construction is growing rapidly due to its potential benefits. However, there's a notable lack of research on the fire performance of 3D Printed Concrete (3DPC) walls. This study addresses this gap by investigating how 3DPC walls respond to controlled heating conditions in a simplified test. The research aims to provide crucial insights into the behavior of 3D-printed mortar composite walls when exposed to fire. The findings have the potential to enhance safety and reliability in 3D printing technology within the construction industry. Furthermore, it could contribute to improving the fire safety standards of architectural structures and expand the use of 3D printing in future construction projects.