• Title/Summary/Keyword: fire behavior

Search Result 594, Processing Time 0.024 seconds

An advanced software interface to make OpenSees for thermal analysis of structures more user-friendly

  • Seong-Hoon Jeong;Ehsan Mansouri;Nadia Ralston;Jong-Wan Hu
    • Steel and Composite Structures
    • /
    • v.51 no.2
    • /
    • pp.127-138
    • /
    • 2024
  • In this paper, structural behavior under fire conditions is comprehensively examined, and a novel software interface for testing interfaces efficiently is developed and validated. In order to accurately assess the response of structures to fire scenarios, advanced simulation techniques and modeling approaches are incorporated into the study. This interface enables accurate heat transfer analysis and thermo-mechanical simulations by integrating software tools such as CSI ETABS, CSI SAP2000, and OpenSees. Heat transfer models can be automatically generated, simulation outputs processed, and structural responses interpreted under a variety of fire scenarios using the proposed technique. As a result of rigorous testing and validation against established methods, including Cardington tests on scales and hybrid simulation approaches, the software interface has been proven to be effective and accurate. The analysis process is streamlined by this interface, providing engineers and researchers with a robust tool for assessing structural performance under fire conditions.

Analysis of the Relationship between Landform and Forest Fire Severity (지형과 산불피해도와의 관계 분석)

  • Lee, Byung-Doo;Won, Myoung-Soo;Jang, Kwang-Min;Lee, Myung-Bo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.11 no.1
    • /
    • pp.58-67
    • /
    • 2008
  • Topography factors, as homeostasis variables at forest fire, affect the formation of fuel load patterns, atmospheric phenomena and forest fire behavior. Examination of the correlation between landforms and fire severity is important to decision making for fire hazard analysis and fighting strategies. In this study, fire severity was analyzed using Normalized Burn Ratio(NBR) derived from pre- and post-fire Landsat TM/+ETM images and landform were classified based on Topographic Position Index(TPI) in Samcheok(2000), Cheongyang(2002), and Yangyang(2005) forest fire regions. F-tests and Duncan's multi-range test between landform and fire severity showed that fire severities of headwater, high ridges, and upper slopes is higher than ones of local ridges, midslope ridges, and plains. Fire severity were more sensitive in coniferous forest than broadleaf forests.

  • PDF

A Study on the Fire Spread through Curtain Wall System with Fire Simulations (FDS) (화재 시뮬레이션(FDS)을 이용한 커튼월 구조의 화재 확산에 관한 연구)

  • Song, Young-Joo;Gu, Seon-Hwan;Kim, Hyun-Jin;Park, Deuk-Jin;Park, Jeong-Min
    • Fire Science and Engineering
    • /
    • v.26 no.6
    • /
    • pp.31-37
    • /
    • 2012
  • In this study, the fire risk of the curtain wall structure was compared with a general structure among the double envelope structure using a fire simulation program. To this end, a fire-story building curtain wall was modeled as virtual using the PyroSim based on a fire simulation program (FDS). And then, the fires occurred in the model, divided by curtain wall non-applied model and applied model, in the same structure and place. To identify the fire characteristics, smoke behavior characteristics, viewing distance, and volume fractions of CO and $CO_2$ were comparative analyzed. As a result, it was identified that the curtain wall applied model quickly filled with smoke from the top floor to under the floor compared to the curtain wall non-applied model. From this study, the fire risk of curtain wall structure was evaluated in detail using the fire simulations.

Thermo-mechanical analysis of reinforced concrete slab using different fire models

  • Suljevic, Samir;Medic, Senad;Hrasnica, Mustafa
    • Coupled systems mechanics
    • /
    • v.9 no.2
    • /
    • pp.163-182
    • /
    • 2020
  • Coupled thermo-mechanical analysis of reinforced concrete slab at elevated temperatures from a fire accounting for nonlinear thermal parameters is carried out. The main focus of the paper is put on a one-way continuous reinforced concrete slab exposed to fire from the single (bottom) side as the most typical working condition under fire loading. Although contemporary techniques alongside the fire protection measures are in constant development, in most cases it is not possible to avoid the material deterioration particularly nearby the exposed surface from a fire. Thereby the structural fire resistance of reinforced concrete slabs is mostly influenced by a relative distance between reinforcement and the exposed surface. A parametric study with variable concrete cover ranging from 15 mm to 35 mm is performed. As the first part of a one-way coupled thermo-mechanical analysis, transient nonlinear heat transfer analysis is performed by applying the net heat flux on the exposed surface. The solution of proposed heat analysis is obtained at certain time steps of interest by α-method using the explicit Euler time-integration scheme. Spatial discretization is done by the finite element method using a 1D 2-noded truss element with the temperature nodal values as unknowns. The obtained results in terms of temperature field inside the element are compared with available numerical and experimental results. A high level of agreement can be observed, implying the proposed model capable of describing the temperature field during a fire. Accompanying thermal analysis, mechanical analysis is performed in two ways. Firstly, using the guidelines given in Eurocode 2 - Part 1-2 resulting in the fire resistance rating for the aforementioned concrete cover values. The second way is a fully numerical coupled analysis carried out in general-purpose finite element software DIANA FEA. Both approaches indicate structural fire behavior similar to those observed in large-scale fire tests.

A Study on Ventilation Effects on Smoke Behavior in Rescue Station for Tunnel Fires (철도터널 화재시 구난역 내의 연기거동에 미치는 배연효과에 관한 연구)

  • Jang, Won-Cheol;Kim, Dong-Woon;Lee, Seong-Hyuk;Ryou, Hong-Sun
    • Journal of the Korean Society for Railway
    • /
    • v.11 no.3
    • /
    • pp.294-299
    • /
    • 2008
  • The present study investigates the ventilation effects on smoke spreading with the rescue stations. Experiments for tunnel fires were carried out for n-heptane pool em at different fire locations, and the heat release rates (HRR) were obtained by addition, using the commercial code (FLUENT), the present article presents numerical results for smoke behavior in railway tunnels with rescue station, and it uses the MVHS (Modified Volumetric Heat Source) model for estimation of combustion products resulting from the fire source determined from the HRR measurement. As a result, it is found that smoke propagation is prevented successfully by the fire doors located inside the cross-passages and especially, the smoke behavior in the accident tunnel can be controlled through the ventilation system because of substantial change in smoke flow direction in the cross-passages.

Study on The Heat Transfer and Mechanical Modeling of Fiber-Mixed High Strength Concrete (섬유혼입 고강도 콘크리트의 열전달 및 역학적 거동 해석모델에 대한 연구)

  • Shin, Young-Sub;Han, Tong-Seok;Youm, Kwang-Soo;Jeon, Hyun-Kyu
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.2
    • /
    • pp.45-52
    • /
    • 2011
  • To improve fire-resistance of a high strength concrete against spalling under elevated temperature, fibers can be mixed to provide flow paths of evaporated water to the surface of concrete when heated. In this study, the experiment of a column under fire and mechanical loads is conducted and the material model for predicting temperature of reinforcement steel bar and mechanical behavior of fiber-mixed high strength concrete is suggested. The material model in previous studies is modified by incorporating physical behavior of internal concrete and thermal characteristics of concrete at the elevated temperature. Thermo-mechanical analysis of the fiber-mixed high strength concrete column is conducted using the calibrated material model. The performance of the proposed material model is confirmed by comparing thermo-mechanical analysis results with the experiment of a column under fire and mechanical loads.

Experimental Study on the Measurement of Fire Behavior and Heat Release Rate in Building Compartment Space - Focus on Full Scale Fire Test of the Bed Mattress - (건축물 구획공간에 따른 화재성상 및 열방출율 측정에 관한 실험적 연구 - 실물규모 침대 매트리스 화재시험 중심으로 -)

  • Seo, Bo-Youl;Jang, Woo-Bin;Park, Kye-Won;Hong, Won-Hwa
    • Fire Science and Engineering
    • /
    • v.32 no.6
    • /
    • pp.28-33
    • /
    • 2018
  • To measure the full scale fire test and heat release rate of bed mattresses according to the building compartment space, a fire test was performed using the Standard test method to determine the heat release rate of mattresses and mattress sets (KS F ISO 12949: 2011). Both test locations showed similar fire growth until approximately 3 minutes after burner ignition. After 3 minutes, the heat release rate in the test room was higher than the open calorimeter. For bed mattresses (SS), the maximum heat release rate in the open calorimeter was 735 kW and the maximum heat release rate in the test room was 992 kW. For bed mattresses (Q), the heat release rate in the test room increased more rapidly than the open calorimeter. The maximum heat release rate in the open calorimeter was 1,087 kW (346 s) and the maximum heat release rate in the test room was 2,127 kW (287 s). The difference between the maximum heat release rate and the measurement time according to the test location was confirmed.

Fire Characteristics of Flaming and Smoldering Combustion of Wood Combustibles Considering Thickness (목재 가연물의 두께에 따른 화염연소와 훈소상태에서의 화재특성)

  • Kim, Sung-Chan;Nam, Dong-Gun
    • Fire Science and Engineering
    • /
    • v.29 no.4
    • /
    • pp.67-72
    • /
    • 2015
  • A series of fire tests was conducted to examine the fire characteristics of flaming and smoldering combustion of engineered wood products, which have been widely used for furniture and finishing materials in buildings. The engineered wood products of MDF, plywood, and chipboard were ignited by a radiant cone heater with incident heat flux of $50kW/m^2$. During the fire test, key parameters representing the fire characteristics such as the heat release rate, yield rate of combustion product, and effective heat of combustion were quantified in terms of thickness. The tests show two peak points of HRRPUA due to lateral fire propagation in the initial stage, followed by later fire penetration through the specimen thickness. The mass loss rate of flaming combustion was 5 times higher than that of smoldering combustion, while the CO yield rate of smoldering combustion was 10 times higher than that of flaming combustion. This study can contribute to the understanding of fire behavior of wood combustibles and provide useful data for fire analysis.

Temperature-Dependency Thermal Properties and Transient Thermal Analysis of Structural Frames Exposed to Fire (온도의존성 열특성 계수를 고려한 화재에 노출된 철근콘크리트 골조의 해석적 연구)

  • Han, Byung-Chan;Kwon, Young-Jin;Kim, Jae-Hwan;Shin, Yeong-Soo;Choi, Eun-Gyu
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.3
    • /
    • pp.283-292
    • /
    • 2007
  • A research projects is currently being conducted to develop a nonlinear finite element analysis methods for predicting the structural behavior of reinforced concrete frame structures, exposed to fire. As part of this, reinforced concrete frames subjected to fire loads were analyzed using the nonlinear finite-element program DIANA. Two numerical steps are incorporated in this program. The first step carries out the nonlinear transient heat flow analysis associated with fire and the second step predicts the structural behavior of reinforced concrete frames subjected to the thermal histories predicted by first step. The complex features of structural behavior in fire conditions, such as thermal expansion, plasticity, cracking or crushing, and material properties changing with temperature are considered. A concrete material model based on nonlinear fracture mechanics to take cracking into account and plasticity models for concrete in compression and reinforcement steel were used. The material and analytical models developed in this paper are verified against the experimental data on simple reinforced concrete beams. The changes in thermal parameters are discussed from the point of view of changes of structure and chemical composition due to the high temperature exposure. Although, this study considers codes standard fire for reinforced concrete frame, any other time-temperature relationship can be easily incorporated.

The Convergence Research on Oral Health Care Behavior of Fire Officers (소방공무원의 구강건강관리 행태에 관한 융합연구)

  • Bak, Young-Seok;Jung, Su-Jin;Lee, Mi-Ra
    • Journal of Convergence for Information Technology
    • /
    • v.7 no.6
    • /
    • pp.9-17
    • /
    • 2017
  • This study was conducted in 241 fire officers at fire stations in Daejeon Metropolitan City to determine their oral health care behavior status and obtained the following results: First, men were more likely to brush their teeth 3 times a day and women were more likely to brush their teeth 4 times a day; those who were in their twenties and had ${\leq}5$ years of career brushed their teeth for ${\geq}3$ minutes. Second, the respondents who were in their twenties and thirties and had <10 years of career were more likely to use auxiliary oral hygiene devices and fire captains and those at higher positions were more likely to have received oral health education. Third, the respondents having received oral health education were more likely to use auxiliary oral hygiene devices and to have their teeth scaling within a year. While the fire officers were fortunately at good levels of oral health care, taking the poor working environment into account, the efforts to develop job-customized oral health programs in which IT and robot technologies are combined to improve oral health and take measures to publicize the programs and to give better treatment to fire officers are expected to put them in better oral health care status.