• Title/Summary/Keyword: fire behavior

Search Result 593, Processing Time 0.022 seconds

Evaluation of the Closed-type Sprinkler Head Activation Time (밀폐형 스프링클러 헤드의 동작시간 평가)

  • Moon-Hak, Jee;Sung-Yull, Hong
    • Fire Science and Engineering
    • /
    • v.18 no.3
    • /
    • pp.1-8
    • /
    • 2004
  • As a predominant active fire suppression method, closed-type sprinkler systems are used for the purpose of fire control and suppression at the nuclear power plants as well as the industrial facilities. It goes without saying that the proper selection of the system guarantees the adequate actuation of the thermal device. Consequently, the appropriate evaluation should be executed for the thermal behavior with the theoretical and empirical approach. For this purpose, the comparison of activation time for the fusible-link type sprinkler head with the simplified fire case and t-square fire growth case was evaluated. At this paper, the comparison output was presented with the tendency of thermal behavior. In addition, we issued some technical comments for the most appropriate equation in case of the estimation of the sprinkler head activation time. We also raised some idea that should be incorporated for the usage of the t-square equation for the realistic application in the field of the performance-base fire protection approach.

Analysis of restrained steel beams subjected to heating and cooling Part I: Theory

  • Li, Guo-Qiang;Guo, Shi-Xiong
    • Steel and Composite Structures
    • /
    • v.8 no.1
    • /
    • pp.1-18
    • /
    • 2008
  • Observations from experiments and real fire indicate that restrained steel beams have better fire-resistant capability than isolated beams. Due to the effects of restraints, a steel beam in fire condition can undergo very large deflections and the run away damage may be avoided. In addition, axial forces will be induced with temperature increasing and play an important role on the behaviour of the restrained beam. The factors influencing the behavior of a restrained beam subjected to fire include the stiffness of axial and rotational restraints, the load type on the beam and the distribution of temperature in the cross-section of the beam, etc. In this paper, a simplified model is proposed to analyze the performance of restrained steel beams in fire condition. Based on an assumption of the deflection curve of the beam, the axial force, together with the strain and stress distributions in the beam, can be determined. By integrating the stress, the combined moment and force in the cross-section of the beam can be obtained. Then, through substituting the moment and axial force into the equilibrium equation, the behavior of the restrained beam in fire condition can be worked out. Furthermore, for the safety evaluation and repair after a fire, the behaviour of restrained beams during cooling should be understood. For a restrained beam experiencing very high temperatures, the strength of the steel will recover when temperature decreases, but the contraction force, which is produced by thermal contraction, will aggravate the tensile stresses in the beam. In this paper, the behaviour of the restrained beam in cooling phase is analyzed, and the effect of the contraction force is discussed.

Distribution of Heat and Smoke Related to Openings in Hise-Rise Apartment Building Fires (고층 공동주택의 개구특성에 따른 화재시 열.연기유동에 관한 연구)

  • 이지희
    • Fire Science and Engineering
    • /
    • v.15 no.2
    • /
    • pp.59-79
    • /
    • 2001
  • The paper proposes alternatives for fire safety in architectural planning through heat-smoke distribution related to openings so that we decrease casualty and property loss by fire and lay a great emphasis on building high-rise apartments with consideration of fire safety in Korea. An analysis program(HFA-Heat Fluid Analysis) is built to perform simultaneously numerical analysis and experimental analysis on rooms, units and buildings. In consequence, on the first, fire prevention methods are required to be set up related to openings for design rooms since the flow of heat and smoke is influenced by the type of openings in high-rise apartments. Second, the numerical analysis showed that different planning types cause to show differences in the spreading time of heat and smoke to design the units of high-rise apartments. On the third, each unit building showed different fire behavior depending on openings by numerical analysis and small scaled experiment on heat and smoke flow.

  • PDF

Experimental Study of Fire Characteristics of a Tray Flame Retardant Cable (트레이용 난연 전력 케이블의 화재특성에 관한 실험적 연구)

  • Kim, Sung Chan;Kim, Jung Yong;Bang, Kyoung Sik
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.3
    • /
    • pp.39-43
    • /
    • 2013
  • The present study has been conducted to investigate the fire combustion properties and fire behavior of an IEEE-383 qualified flame retardant cable. The reference reaction rate and reference temperature which are commonly used in pyrolysis model of fire propagation process was obtained by the thermo-gravimetric analysis of the cable component materials. The mass fraction of FR-PVC sheath abruptly decreased near temperature range of $250{\sim}260^{\circ}C$ and its maximum reaction rate was about $2.58{\times}10^{-3}$[1/s]. For the XLPE insulation of the cable, the temperature causing maximum mass fraction change was ranged about $380{\sim}390^{\circ}C$ and it has reached to the maximum reaction rate of $5.10{\times}10^{-3}$[1/s]. The flame retardant cable was burned by a pilot flame meker buner and the burning behavior of the cable was observed during the fire test. Heat release rate of the flame retardant cable was measured by a laboratory scale oxygen consumption calorimeter and the mass loss rate of the cable was calculated by the measured cable mass during the burning test. The representative value of the effective heat of combustion was evaluated by the total released energy integrated by the measured heat release rate and burned mass. This study can contribute to study the electric cable fire and provide the pyrolysis properties for the computational modeling.

Integrated fire dynamics and thermomechanical modeling framework for steel-concrete composite structures

  • Choi, Joonho;Kim, Heesun;Haj-ali, Rami
    • Steel and Composite Structures
    • /
    • v.10 no.2
    • /
    • pp.129-149
    • /
    • 2010
  • The objective of this study is to formulate a general 3D material-structural analysis framework for the thermomechanical behavior of steel-concrete structures in a fire environment. The proposed analysis framework consists of three sequential modeling parts: fire dynamics simulation, heat transfer analysis, and a thermomechanical stress analysis of the structure. The first modeling part consists of applying the NIST (National Institute of Standards and Technology) Fire Dynamics Simulator (FDS) where coupled CFD (Computational Fluid Dynamics) with thermodynamics are combined to realistically model the fire progression within the steel-concrete structure. The goal is to generate the spatial-temporal (ST) solution variables (temperature, heat flux) on the surfaces of the structure. The FDS-ST solutions are generated in a discrete form. Continuous FDS-ST approximations are then developed to represent the temperature or heat-flux at any given time or point within the structure. An extensive numerical study is carried out to examine the best ST approximation functions that strike a balance between accuracy and simplicity. The second modeling part consists of a finite-element (FE) transient heat analysis of the structure using the continuous FDS-ST surface variables as prescribed thermal boundary conditions. The third modeling part is a thermomechanical FE structural analysis using both nonlinear material and geometry. The temperature history from the second modeling part is used at all nodal points. The ABAQUS (2003) FE code is used with external user subroutines for the second and third simulation parts in order to describe the specific heat temperature nonlinear dependency that drastically affects the transient thermal solution especially for concrete materials. User subroutines are also developed to apply the continuous FDS-ST surface nodal boundary conditions in the transient heat FE analysis. The proposed modeling framework is applied to predict the temperature and deflection of the well-documented third Cardington fire test.

Formulation of Fire Reliability Assessment Method for Structural Strength (화재 구조강도에 대한 신뢰성 평가방법의 정립)

  • 양영순;유원선;이상엽
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.04a
    • /
    • pp.161-168
    • /
    • 2004
  • This study describes the behavior and failure probability of basic structural member in case of fire for the research of safety assessment on onshore structure. Fire safety assessment can be done by comparing fire resistance of members with fire severity of heat load For more Practical applications, the commercial structural analysis program is linked with the in-house code and gets the limiting temperature by analyzing structural strength of member with elasto-plastic analysis and large deflection analysis. AFOSM method is utilized to obtain the failure probability against the fire. The examples of rather simple structures such as beams and plates are applied to explain and verify the procedure of fire safety assessment.

  • PDF

3D finite element analysis of the whole-building behavior of tall building in fire

  • Fu, Feng
    • Advances in Computational Design
    • /
    • v.1 no.4
    • /
    • pp.329-344
    • /
    • 2016
  • In this paper, a methodology to simulate the whole-building behaviour of the tall building under fire is developed by the author using a 3-D nonlinear finite element method. The mechanical and thermal material nonlinearities of the structural members, such as the structural steel members, concrete slabs and reinforcing bars were included in the model. In order to closely simulate the real condition under the conventional fire incident, in the simulation, the fire temperature was applied on level 9, 10 and 11. Then, a numerical investigation on the whole-building response of the building in fire was made. The temperature distribution of the floor slabs, steel beams and columns were predicted. In addition, the behaviours of the structural members under fire such as beam force, column force and deflections were also investigated.

Investigation of main Combustibles for fire behavior prediction at Underground Spaces (지하대공간 화재성상 예측을 위한 주요가연물조사)

  • Kang, Seung-Goo;Seo, Dong-Goo;Kim, Dong-Jun;Kwon, Young-Jin
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2011.11a
    • /
    • pp.76-79
    • /
    • 2011
  • 본 연구는 지하대공간의 화재 하중 및 성상을 예측하기 위하여 주요가연물조사를 실시하였다. 조사한 결과 대형서점의 가연물의 종류, 크기, 재질과 지하주차장의 가연물의 종류, 주차대수를 도출할 수 있었다. 이에 대하여 지하공간내 발열량이 높은 곳과 위험성이 높을 것으로 판단되는 곳을 선정하여 가연물조사를 통해 유형을 분석하고, 이에 대한 표준 모델을 모듈화를 제안하여 지하대공간의 화재성상예측을 위한 기초자료로 제시한다.

  • PDF

Evaluation of Residual Strength of Fire-Damaged RC Beams with Normal and High Strength (화재 피해를 입은 일반강도 및 고강도 RC 휨 부재의 잔존강도 평가)

  • Choi Eungyu;Kang Ji Yeon;Shin Mi Kyoung;Shin Young-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.51-54
    • /
    • 2005
  • Reinforced Concrete structures have been commonly regarded as fire-resisting constructions. In the case of high-strength concrete, however, the behavior of a concrete member under fire and after fire has characteristics in different way with normal strength concrete members because of spalling. The resonable evaluation about the residual strength and stiffness of members as well as material properties has to be conducted before reusing the fire-damaged structures or retrofitting or strengthening them. Therefore, the guideline is needed for evaluation the residual strength and stiffness. In this study, the fire test is conducted with parameters like concrete strength, fire time and cover thickness, etc. The loads-deflection curves are used for comparison and analysis with the parameters.

  • PDF

Research on FARSITE for introducing a Forest fire simulator (산불확산 시뮬레이션 도입을 위한 FARSITE 고찰)

  • Lee, Si-Young;Park, Houng-Sek
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.161-164
    • /
    • 2008
  • We studied a basic concept and application about FARSITE, which is a forest fire spread simulator for preventing and predicting fire in United States Department of Agriculture(USDA). And, we researched a problem in the transition for introducing, so we serve the basic method for prevention and attacking fire. For this transition, we compared the behavior of the 2005 Yangyang forest fire with the result of a simulation. The spread direction is similar to real data. But, while mean spread of rate was 0.65km/hr on real data, it was 0.3km/hr on simulation. As Damaged area is 1,387ha on real, it was 5,368ha on simulation. Therefore, it is necessary to establish a fuel concept for more accurate simulation.

  • PDF