• Title/Summary/Keyword: finite-element numerical modeling

Search Result 772, Processing Time 0.029 seconds

Wet Drop Impact Response Analysis of CCS in Membrane Type LNG Carriers -I : Development of Numerical Simulation Analysis Technique through Validation- (멤브레인형 LNG선 화물창 단열시스템의 수면낙하 내충격 응답해석 -I : 검증을 통한 수치해석 기법 개발-)

  • Lee, Sang-Gab;Hwang, Jeong-Oh;Kim, Wha-Soo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.6
    • /
    • pp.726-734
    • /
    • 2008
  • While the structural safety assessment of Cargo Containment System(CCS) in membrane type LNG carriers has to be carried out in consideration of sloshing impact pressure, it is very difficult to figure out its dynamic response behaviors due to its very complex structural arrangements/materials and complicated phenomena of sloshing impact loading. For the development of its original technique, it is necessary to understand the characteristics of dynamic response behavior of CCS structure under sloshing impact pressure. In this study, for the exact understanding of dynamic response behavior of CCS structure in membrane Mark III type LNG carriers under sloshing impact pressure, its wet drop impact response analyses were carried out by using Fluid-Structure Interaction(FSI) analysis technique of LS-DYNA code, and were also validated through a series of wet drop experiments for the enhancement of more accurate shock response analysis technique. It might be thought that the structural response behaviors of impact response analysis, such as impact pressure impulses and resulted strain time histories, generally showed very good agreement with experimental ones with very appropriate use of FSI analysis technique of LS-DYNA code, finite element modeling and material properties of CCS structure, finite element modeling and equation of state(EOS) of fluid domain.

Advanced analysis of cyclic behaviour of plane steel frames with semi-rigid connections

  • Saravanan, M.;Arul Jayachandran, S.;Marimuthu, V.;Prabha, P.
    • Steel and Composite Structures
    • /
    • v.9 no.4
    • /
    • pp.381-395
    • /
    • 2009
  • This paper presents the details of an advanced Finite Element (FE) analysis of a plane steel portal frame with semi-rigid beam-to-column connections subjected cyclic loading. In spite of several component models on cyclic behaviour of connections presented in the literature, works on numerical investigations on cyclic behaviour of full scale frames are rather scarce. This paper presents the evolution of an FE model which deals comprehensively with the issues related to cyclic behaviour of full scale steel frames using ABAQUS software. In the material modeling, combined kinematic/isotropic hardening model and isotropic hardening model along with Von Mises criteria are used. Connection non-linearity is also considered in the analysis. The bolt slip which happens in friction grip connection is modeled. The bolt load variation during loading, which is a pivotal issue in reality, has been taken care in the present model. This aspect, according to the knowledge of the authors, has been first time reported in the literature. The numerically predicted results using the methodology evolved in the present study, for the cyclic behaviour of a cantilever beam and a rigid frame, are validated with experimental results available in the literature. The moment-rotation and deflection responses of the evolved model, match well with experimental results. This proves that the methodology for evolving the steel frame and connection model presented in this paper is closer to real frame behaviour as evident from the good comparison and hence paves the way for further parametric studies on cyclic behaviour of flexibly connected frames.

Development of 3D Dynamic Numerical Simulation Method on a Soil-Pile System (지반-말뚝 시스템에 대한 3차원 동적 수치 모델링 기법 개발)

  • Kim, Seong-Hwan;Na, Seon-Hong;Han, Jin-Tae;Kim, Sung-Ryul;Sun, Chang-Guk;Kim, Myoung-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.5
    • /
    • pp.85-92
    • /
    • 2011
  • The dynamic behavior of piles becomes very complex due to soil-pile dynamic interaction, soil non-linearity, resonance phenomena of soil-pile system and so on. Therefore, the proper numerical simulation of the pile behavior needs much effort and calculation time. In this research, a new modeling method, which can be applied to the conventional finite difference analysis program FLAC 3D, was developed to reduce the calculation time. The soil domain in this method is divided into a near-field region and a far-field region, which is not influenced by the soil-pile dynamic interaction. Then, the ground motion of the far-field is applied to the boundaries of the near-field instead of modeling the far-field region as finite meshes. In addition, the soil non-linearity behavior is modeled by using the hysteretic damping model, which determines the soil tangent modulus as a function of shear strain and the interface element was applied to simulate the separation and slip between the soil and pile. The proposed method reduced the calculation time by as much as one third compared with a usual modeling method and maintained the accuracy of the calculated results. The calculated results by the proposed method showed a good agreement with the prototype pile behavior, which was obtained by applying a similitude law to the 1-g shaking table test results.

Resistivity Survey Using Long Electrodes (긴 전극을 사용하는 전기비저항 탐사)

  • Cho, In-Ky;Lee, Keun-Soo;Kim, Yeon-Jung;Kim, Rae-Young
    • Geophysics and Geophysical Exploration
    • /
    • v.19 no.1
    • /
    • pp.45-50
    • /
    • 2016
  • Generally, a point source has been routinely used in the electrical resistivity measurements because of easy installation. If steel-cased wells are used as long electrodes, we can expect the better depth of investigation. However, the resistivity data with long electrodes can not be processed with a conventional inversion algorithm because a long electrode produces the different primary potential distribution compared with the point source. In this study, we proposed a new technique to process the electrical resistivity data with long electrodes by replacing the long electrode with a sequence of point electrodes. Comparing the potentials obtained from the technique with the analytic/numerical solution, we ensure that the proposed technique can be used for the numerical resistivity modeling based on the finite difference or finite element method.

On the properties of brain sub arachnoid space and biomechanics of head impacts leading to traumatic brain injury

  • Saboori, Parisa;Sadegh, Ali
    • Advances in biomechanics and applications
    • /
    • v.1 no.4
    • /
    • pp.253-267
    • /
    • 2014
  • The human head is identified as the body region most frequently involved in life-threatening injuries. Extensive research based on experimental, analytical and numerical methods has sought to quantify the response of the human head to blunt impact in an attempt to explain the likely injury process. Blunt head impact arising from vehicular collisions, sporting injuries, and falls leads to relative motion between the brain and skull and an increase in contact and shear stresses in the meningeal region, thereby leading to traumatic brain injuries. In this paper the properties and material modeling of the subarachnoid space (SAS) as it relates to Traumatic Brain Injuries (TBI) is investigated. This was accomplished using a simplified local model and a validated 3D finite element model. First the material modeling of the trabeculae in the Subarachnoid Space (SAS) was investigated and validated, then the validated material property was used in a 3D head model. In addition, the strain in the brain due to an impact was investigated. From this work it was determined that the material property of the SAS is approximately E = 1150 Pa and that the strain in the brain, and thus the severity of TBI, is proportional to the applied impact velocity and is approximately a quadratic function. This study reveals that the choice of material behavior and properties of the SAS are significant factors in determining the strain in the brain and therefore the understanding of different types of head/brain injuries.

Impact analysis of composite plate by multiscale modeling (멀티스케일 모델링에 의한 복합재료 평판의 충격해석)

  • Ji Kuk Hyun;Paik Seung Hoon;Kim Seung Jo
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.67-70
    • /
    • 2004
  • An investigation was performed to study the impact damage of the laminated composite plates caused by a low- velocity foreign object with multi-scale modeling based on the concepts of Direct Numerical Simulation (DNS)[4]. In the micro-scale part, we discretize the composite plates through separate modeling of fiber and matrix for the local microscopic analysis. A micro-scalemodel was developed for predicting the initiation of the damage and the extent of the final damage as a function of material properties, laminate configuration and the impactor's mass, etc. Anda macro-scale model was developed for description of global dynamic behavior. The connection betweenmicroscopic and macroscopic is implemented by the tied interface constraints of LS-DYNA contact card. A transient dynamic finite element analysis was adopted for calculating the contact force history and the stresses and strains inside the composites during impact resulting from a point-nose impactor. The low-velocity impact events such as contact force, deformation, etc. are simulated in the macroscopic sense and the impact damages, fiber-breakage, matrix cracking and delamination etc. are examined in the microscopic sense.

  • PDF

Reliability Analysis for Structure Design of Automatic Ocean Salt Collector Using Sampling Method of Monte Carlo Simulation

  • Song, Chang Yong
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.5
    • /
    • pp.316-324
    • /
    • 2020
  • This paper presents comparative studies of reliability analysis and meta-modeling using the sampling method of Monte Carlo simulation for the structure design of an automatic ocean salt collector (AOSC). The thickness sizing variables of structure members are considered as random variables. Probabilistic performance functions are selected from strength performances evaluated via the finite element analysis of an AOSC. The sampling methods used in the comparative studies are simple random sampling and Sobol sequences with varied numbers of sampling. Approximation methods such as the Kriging model is applied to the meta-model generation. Reliability performances such as the probability failure and distribution are compared based on the variation of the sampling method of Monte Carlo simulation. The meta-modeling accuracy is evaluated for the Kriging model generated from the Monte Carlo simulation and Sobol sequence results. It is discovered that the Sobol sequence method is applicable to not only to the reliability analysis for the structural design of marine equipment such as the AOSC, but also to Kriging meta-modeling owing to its high numerical efficiency.

Performance of bridge structures under heavy goods vehicle impact

  • Zhao, Wuchao;Qian, Jiang;Wang, Juan
    • Computers and Concrete
    • /
    • v.22 no.6
    • /
    • pp.515-525
    • /
    • 2018
  • This paper presents a numerical study on the performance of reinforced concrete (RC) bridge structures subjected to heavy goods vehicle (HGV) collision. The objectives of this study are to investigate the dynamic response and failure modes of different types of bridges under impact loading as well as to give an insight into the simplified methods for modeling bridge structures. For this purpose, detailed finite-element models of HGV and bridges are established and verified against the full-scale collision experiment and a recent traffic accident. An intensive parametric study with the consideration of vehicle weight, vehicle velocity, structural type, simplified methods for modeling bridges is conducted; then the failure mode, impact force, deformation and internal force distribution of the validated bridge models are discussed. It is observed that the structural type has a significant effect on the force-transferring mechanism, failure mode and dynamic response of bridge structures, thus it should be considered in the anti-impact design of bridge structures. The impact force of HGV is mainly determined by the impact weight, impact velocity and contact interface, rather than the simplification of the superstructure. Furthermore, to reduce the modeling and computing cost, it is suggested to utilize the simplified bridge model considering the inertial effect of the superstructure to evaluate the structural impact behavior within a reasonable precision range.

Analysis of Skin Friction Behavior in Prebored and Precast Piles Based on Field Loading Test (재하시험을 통한 매입말뚝의 주면마찰력 거동 분석)

  • Jung, Gyoung-Ja;Kim, Do-Hyun;Lee, Chul-Ju;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.1
    • /
    • pp.31-38
    • /
    • 2017
  • Skin friction of prebored and precast pile may be one of the most critical factors affecting the bearing capacity and settlement. Special attention was given to the interface behavior of pile-cement milk-surrounding soil when the load is acting on the prebored and precast pile. The cases of single pile were analyzed through a three-dimensional finite element approach and pile loading tests. A series of numerical analyses of the interface of pile-cement milk-soil was conducted with the proposed t-z curve and field measurements. It is shown that the use of cement milk around the pile increases the skin friction and reduces the pile settlement. It is also known that the suggested t-z curve between the cement milk and the soil, enhances the accuracy of the numerical analysis results.

Numerical Assessment of Dislocation-Punching Theories for Continuum Structural Analysis of Particle-Reinforced Metal Matrix Composites (입자 강화 금속기지 복합재의 연속체 강도해석을 위한 전위 펀칭 이론의 전산적 평가)

  • Suh, Yeong-Sung;Kim, Yong-Bae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.3
    • /
    • pp.273-279
    • /
    • 2011
  • The yield strength of particle-reinforced composites increases as the size of the particle decreases. This kind of length scale has been mainly attributed to the geometrically necessary dislocation punched around the particle as a result of the mismatch of the thermal expansion coefficients of the particle and the matrix when the composites are cooled down after consolidation. In this study, two dislocation-punching theories that can be used in continuum structural modeling are assessed numerically. The two theories, presented by Shibata et al. and Dunand and Mortensen, calculate the size of the dislocationpunched zone. The composite yield strengths predicted by finite element analysis were qualitatively compared with experimental results. When the size of the particle is less than $2{\mu}m$, the patterns of the composite strength are quite different. The results obtained by Shibata et al. are in qualitatively better agreement with the experimental results.