• Title/Summary/Keyword: finite-element numerical modeling

Search Result 772, Processing Time 0.029 seconds

A Study on Screening of Surface Waves by Wave Barriers (방진구조물에 의한 표면파 산란해석)

  • Lee, Jong-Seh;Kim, Hee-Seok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.578-581
    • /
    • 2004
  • In this paper numerical and experimental studies are conducted to examine the wave screening effectiveness of wave barriers. The numerical study is based on a finite element model of a 'sandbox' with Lysmer-Kuhlemeyer-type absorbing boundaries. Using the model, the screening effectiveness of wave barriers is studied for different barrier dimensions and distances between the source/receiver and the wave barrier. The results of the numerical modeling are compared with those of the ultrasonic experiment which is performed on an acrylic block with a drilled rectangular cut. Finally, the problem of ground transmitting vibration from a traveling train is numerically treated as a real-world application and the results are discussed in some detail.

  • PDF

Capacitive Equivalent Circuit Modeling for Coplanar Waveguide Discontinuities (코플래너 웨이브가이드 불연속에 대한 용량성 등가회로 모델링)

  • 박기동;임영석
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.8 no.5
    • /
    • pp.486-487
    • /
    • 1997
  • This paper presents the pure capacitive lumped element equivalent circuits for several coplanar waveguide(CPW) discontinuities such as an open-end, an open-end with connected ground planes, a gap and an open-end CPW stub and gives their capacitive element values as a function of physical dimensions of the discontinuity and the frequency for a specific substrate. The capacitive element values are determined from the scattering parameters which are obtained using the finite-difference time-domain(FDTD) method. For an open-end, an open-end with connected ground planes and a gap, the numerical results of the FDTD are compared with the quasi-static results which are calculated using the three- dimensional finite difference method(3D-FDM).

  • PDF

FE modeling for geometrically nonlinear analysis of laminated plates using a new plate theory

  • Bhaskar, Dhiraj P.;Thakur, Ajaykumar G.
    • Advances in aircraft and spacecraft science
    • /
    • v.6 no.5
    • /
    • pp.409-426
    • /
    • 2019
  • The aim of the present work is to study the nonlinear behavior of the laminated composite plates under transverse sinusoidal loading using a new inverse trigonometric shear deformation theory, where geometric nonlinearity in the Von-Karman sense is taken into account. In the present theory, in-plane displacements use an inverse trigonometric shape function to account the effect of transverse shear deformation. The theory satisfies the traction free boundary conditions and violates the need of shear correction factor. The governing equations of equilibrium and boundary conditions associated with present theory are obtained by using the principle of minimum potential energy. These governing equations are solved by eight nodded serendipity element having five degree of freedom per node. A square laminated composite plate is considered for the geometrically linear and nonlinear formulation. The numerical results are obtained for central deflections, in-plane stresses and transverse shear stresses. Finite element Codes are developed using MATLAB. The present results are compared with previously published results. It is concluded that the geometrically linear and nonlinear response of laminated composite plates predicted by using the present inverse trigonometric shape function is in excellent agreement with previously published results.

Experimental study and numerical modeling of liquid sloshing damping in a cylindrical container with annular and sectorial baffles

  • Mohammadi, Mohammad Mahdi;Moosazadeh, Hamid
    • Advances in aircraft and spacecraft science
    • /
    • v.9 no.4
    • /
    • pp.349-366
    • /
    • 2022
  • The ability of baffles in increasing the sloshing damping is investigated in this study by theoretical, numerical, and experimental methods. Baffles Installed as separators in containers, can change the dynamic properties of sloshing. The main purpose of this study is to investigate the effect of baffle placement.The main purpose of this study is to investigate the effect of placing baffles in order to provide appropriate frequencies and damping and to present a practical baffle arrangement in the design ofsloshing. In this regard, an experimental setup is designed to study the fluid sloshing behavior and damping properties in cylindrical tanks filled up to an arbitrary depth. A new combination of annular and sectorial baffles is employed to evaluate fluid sloshing in the tank. The results show that the proposed baffle arrangement has a desired effect on the damping and fluid sloshing frequencies and optimally satisfies the anticipated design requirements. In addition, the theoretical frequencies exceed empirical frequencies at the points far from baffles, while at the points close to baffles, the empirical ones are higher than theoretical ones. Also, at the depths near the bottom of container sloshing frequencies are not affected by sectorial baffles, although the theoretical curve predicts a reduction in the fundamental frequency of sloshing. Finally, the results of finite volume and finite element methods which compared with experimental data, indicated a good agreement between different approaches.

Analysis of Mechanical Behavior for a Pultruded-Wound Hollow Rod of Unsaturated Polyester Resin(UP) with Glass Fibers (인발-와인딩에 의한 불포화수지 섬유강화 중공봉의 기계적 거동해석)

  • Kim, Zoh-Gweon;Lin, Ye
    • Composites Research
    • /
    • v.14 no.6
    • /
    • pp.16-23
    • /
    • 2001
  • Analysis of mechanical behavior for a pultruded-wound hollow rod is presented. For this purpose, the pultruded-wound hollow rod is manufactured by the new winder attached to the conventional pultrusion system. And the conventional pultrusion process is newly altered to manufacture pultruded-wound specimens. A computer program, POST II, is modified to perform this study, In the nonlinear finite element formulation, the updated Lagrangian description method based on the second Piolar-Kirchhoff stress tensor and the Green strain tensor are used. For the finite element modeling of the composite hollow rod, the eight-node degenerated shell element is utilized. In order to estimate the failure, the maximum stress criterion is adopted to the averaged stress in the each layer of the finite elements. As numerical examples, the behavior of glass/up composite hollow rod is investigated from the initial loading to the final collapse. Present finite element results considering stiffness degradation and stress unload due to failure shows excellent agreement with experiments in the ultimate load, failure and deformations.

  • PDF

Design and analysis of slotted shear walls equipped with energy dissipating shear connectors

  • Shen, Shaodong;Nie, Xin;Pan, Peng;Wang, Haishen
    • Computers and Concrete
    • /
    • v.20 no.5
    • /
    • pp.539-544
    • /
    • 2017
  • Shear walls have high stiffness and strength; however, they lack energy dissipation and repairability. In this study, an innovative slotted shear wall featuring vertical slots and steel energy dissipation connectors was developed. The ductility and energy dissipation of the shear wall were improved, while sufficient bearing capacity and structural stiffness were retained. Furthermore, the slotted shear wall does not support vertical forces, and thus it does not have to be arranged continuously along the height of the structure, leading to a much free arrangement of the shear wall. A frame-slotted shear wall structure that combines the conventional frame structure and the innovative shear wall was developed. To investigate the ductility and hysteretic behavior of the slotted shear wall, finite element models of two walls with different steel connectors were built, and pushover and quasi-static analyses were conducted. Numerical analysis results indicated that the deformability and energy dissipation were guaranteed only if the steel connectors yielded before plastic hinges in the wall limbs were formed. Finally, a modified D-value method was proposed to estimate the bearing capacity and stiffness of the slotted shear wall. In this method, the wall limbs are analogous to columns and the connectors are analogous to beams. Results obtained from the modified D-value method were compared with those obtained from the finite element analysis. It was found that the internal force and stiffness estimated with the modified D-value method agreed well with those obtained from the finite element analysis.

Behavior modeling and damage quantification of confined concrete under cyclic loading

  • Sadeghi, Kabir;Nouban, Fatemeh
    • Structural Engineering and Mechanics
    • /
    • v.61 no.5
    • /
    • pp.625-635
    • /
    • 2017
  • Sets of nonlinear formulations together with an energy-based damage index (DI) are proposed to model the behavior and quantify the damage of the confined and unconfined concretes under monotonic and cyclic loading. The proposed formulations and DI can be employed in numerical simulations to determine the stresses and the damages to the fibers or the layers within the sections of reinforced concrete (RC) components. To verify the proposed formulations, an adaptive finite element computer program was generated to simulate the RC structures subjected to monotonic and cyclic loading. By comparing the simulated and the experimental test results, on both the full-scale structural members and concrete cylindrical samples, the proposed uniaxial behavior modeling formulations for confined and unconfined concretes under monotonic and cyclic loading, based on an iterative process, were accordingly adjusted, and then validated. The proposed formulations have strong mathematical structures and can readily be adapted to achieve a higher degree of precision by improving the relevant coefficients based on more precise tests. To apply the proposed DI, the stress-strain data of concrete elements is required. It can easily be calculated by using the proposed nonlinear constitutive laws for confined and unconfined concretes in this paper.

Numerical Simulation of Dam-Break Problem Using SU/PG Scheme (SU/PG 기법을 이용한 댐붕괴 수치모의)

  • Seo, Il Won;Song, Chang Geun
    • 한국방재학회:학술대회논문집
    • /
    • 2011.02a
    • /
    • pp.198-198
    • /
    • 2011
  • The numerical simulation of dam break problem suffers from several challenges in terms of accuracy, stability, and versatility of the simulation algorithm since the water flow is generally discontinuous and presents abrupt variations. Thus, to obtain stable and accurate solutions, flow models for this purpose require numerical schemes provided with shock-capturing properties, and with the ability to work with flexible two-dimensional meshes. In this context, SU/PG method(Hughes and Brooks, 1979) is excellent candidate for the solution of the dam break problem. The weak formulation of the equations and the discontinuous polynomial basis lead to an accurate representation of bore waves(shocks). Furthermore, the discretization of the domain in finite elements is extremely effective in modeling complex geometries. In this study, a finite element model based on the SU/PG scheme is developed to solve shallow water equations and the model is applied to dam break problem. It is found that the present model accurately captures the bore wave that propagates downstream while spreading laterally and the depression wave that moves upstream. Furthermore, the propagation and formation of water surface profile compared favorably with those obtained by the previously published results.

  • PDF

Numerical Simulation of Mechanical Behavior of Composite Structures by Supercomputing Technology

  • Kim, Seung-Jo;Ji, Kuk-Hyun;Paik, Seung-Hoon
    • Advanced Composite Materials
    • /
    • v.17 no.4
    • /
    • pp.373-407
    • /
    • 2008
  • This paper will examine the possibilities of the virtual tests of composite structures by simulating mechanical behaviors by using supercomputing technologies, which have now become easily available and powerful but relatively inexpensive. We will describe mainly the applications of large-scale finite element analysis using the direct numerical simulation (DNS), which describes composite material properties considering individual constituent properties. DNS approach is based on the full microscopic concepts, which can provide detailed information about the local interaction between the constituents and micro-failure mechanisms by separate modeling of each constituent. Various composite materials such as metal matrix composites (MMCs), active fiber composites (AFCs), boron/epoxy cross-ply laminates and 3-D orthogonal woven composites are selected as verification examples of DNS. The effective elastic moduli and impact structural characteristics of the composites are determined using the DNS models. These DNS models can also give the global and local information about deformations and influences of high local in-plane and interlaminar stresses induced by transverse impact loading at a microscopic level inside the materials. Furthermore, the multi-scale models based on DNS concepts considering microscopic and macroscopic structures simultaneously are also developed and a numerical low-velocity impact simulation is performed using these multi-scale DNS models. Through these various applications of DNS models, it can be shown that the DNS approach can provide insights of various structural behaviors of composite structures.

Finite Difference Modeling of a Piled Raft Foundation with Axisymmetry Condition and Interface Element (축대칭 조건 및 경계면 요소를 이용한 Piled Raft 기초의 유한차분 모델링 연구)

  • You, Kwang Ho;Kim, Hyung Ryul;Bae, Sang Han
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.4
    • /
    • pp.853-861
    • /
    • 2015
  • In this study, FDM modelling with axisymmetry condition and interface element was verified whether it is reasonable to estimate compositive behavior of a piled raft foundation. To this end, the modelling validity of piled raft foundations was estimated by comparing and analyzing numerical analysis results and laboratory model test results. Also, load bearing ratio of a raft is analyzed by performing sensitivity analysis of foundation parameters with the actual field conditions. As a result of this study, correlation between bearing capacity and vertical displacement of numerical results turned out to be similar with that of a laboratory model test. In addition, ultimate bearing capacity of piled rafts and load bearing ratio of the raft is calculated to be similar in both cases. The load bearing ratio of the raft was also estimated to be in the range of 33% to 52% from the sensitivity analysis. The results were confirmed to be similar to the previous studies. Therefore, it can be inferred that piled rafts can be effectively modelled applying axisymmetry condition and interface element.