• Title/Summary/Keyword: finite-element modeling

Search Result 2,200, Processing Time 0.027 seconds

Deflection and vibration analysis of higher-order shear deformable compositionally graded porous plate

  • Ebrahimi, Farzad;Habibi, Sajjad
    • Steel and Composite Structures
    • /
    • v.20 no.1
    • /
    • pp.205-225
    • /
    • 2016
  • In this study the finite element method is utilized to predict the deflection and vibration characteristics of rectangular plates made of saturated porous functionally graded materials (PFGM) within the framework of the third order shear deformation plate theory. Material properties of PFGM plate are supposed to vary continuously along the thickness direction according to the power-law form and the porous plate is assumed of the form where pores are saturated with fluid. Various edge conditions of the plate are analyzed. The governing equations of motion are derived through energy method, using calculus of variations while the finite element model is derived based on the constitutive equation of the porous material. According to the numerical results, it is revealed that the proposed modeling and finite element approach can provide accurate deflection and frequency results of the PFGM plates as compared to the previously published results in literature. The detailed mathematical derivations are presented and numerical investigations are performed while the emphasis is placed on investigating the effect of the several parameters such as porosity volume fraction, material distribution profile, mode number and boundary conditions on the natural frequencies and deflection of the PFGM plates in detail. It is explicitly shown that the deflection and vibration behaviour of porous FGM plates are significantly influenced by these effects. Numerical results are presented to serve as benchmarks for future analyses of FGM plates with porosity phases.

A Parametric Study of the Hemming Process by Finite Element Analysis (유한요소해석에 의한 헤밍 공정 변수연구)

  • Kim, Hyung-Jong;Choi, Won-Mog;Lim, Jae-Kyu;Park, Chun-Dal;Lee, Woo-Hong;Kim, Heon-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.2
    • /
    • pp.149-157
    • /
    • 2004
  • Implicit finite element analysis of the flat surface-straight edge hemming process is performed by using a commercial code ABAQUS/Standard. Methods of finite element modeling for springback simulation and contact pair definition are discussed. An optimal mesh system is chosen through the error analysis that is based on the smoothing of discontinuity in the state variables. This study has focused on the investigation of the influence of process parameters in flanging, pre-hemming and main hemming on final hem quality, which can be defined by turn-down, warp and roll-in. The parameters adopted in this parametric study are flange length, flange angle, flanging die corner radius, face angle and insertion angle of pre-hemming punch, and over-stroke of pre-hemming and main hemming punches.

Numerical Modeling for Behavior Prediction of the Magnetic Fluid Based on Finite Element Method (유한요소법을 이용한 자성유체의 거동예측을 위한 수치적 모델링)

  • Seo, Jae-Hyeong;Lee, Moo-Yeon;Seo, Lee-Soo
    • Journal of the Korean Magnetics Society
    • /
    • v.23 no.1
    • /
    • pp.31-35
    • /
    • 2013
  • The objective of this study is numerically analyzed the behavior characteristics of the magnetic fluid in a closed rectangular container using finite element method (FEM). The governing equations are solved with magnetization and Maxwell equations for consideration of rotating effect of the magnetite particle. Then the discretized equations are solved with boundary conditions of the velocity and temperature. The developed model is validated with the results of Davis (1983) and Fusegi et al. (1991) has a good agreement within 5.5 % and 2.7 %, respectively.

Strain Gradient Crystal Plasticity Finite Element Modeling for the Compression Behaviors of Single Crystals (단결정 압축 변형 거동의 변형구배 결정소성 유한요소해석)

  • Jung, Jae-Ho;Cho, Kyung-Mox;Choi, Yoon Suk
    • Korean Journal of Materials Research
    • /
    • v.27 no.12
    • /
    • pp.679-687
    • /
    • 2017
  • A strain-gradient crystal plasticity finite element method(SGCP-FEM) was utilized to simulate the compressive deformation behaviors of single-slip, (111)[$10{\bar{1}}$], oriented FCC single-crystal micro-pillars with two different slip-plane inclination angles, $36.3^{\circ}$ and $48.7^{\circ}$, and the simulation results were compared with those from conventional crystal plasticity finite element method(CP-FEM) simulations. For the low slip-plane inclination angle, a macroscopic diagonal shear band formed along the primary slip direction in both the CP- and SGCP-FEM simulations. However, this shear deformation was limited in the SGCP-FEM, mainly due to the increased slip resistance caused by local strain gradients, which also resulted in strain hardening in the simulated flow curves. The development of a secondly active slip system was altered in the SGCP-FEM, compared to the CP-FEM, for the low slip-plane inclination angle. The shear deformation controlled by the SGCP-FEM reduced the overall crystal rotation of the micro-pillar and limited the evolution of the primary slip system, even at 10 % compression.

Static Analysis of Axisymmetric Circular Plates under Lateral Loading Using Transfer of Stiffness Coefficient (강성계수의 전달을 이용한 횡방향 하중을 받는 축대칭 원판의 정적해석)

  • Choi, Myung-Soo;Yeo, Dong-Jun
    • Journal of Power System Engineering
    • /
    • v.18 no.6
    • /
    • pp.64-69
    • /
    • 2014
  • A circular plate is one of the important structures in many industrial fields. In static analysis of a circular plate, we may obtain an exact solution by analytical method, but it is limited to a simple circular plate. Thus, many researchers and designers have used numerical methods such as the finite element method. The authors of this paper developed the finite element-transfer stiffness coefficient method (FE-TSCM) for static and dynamic analyses of various structures. FE-TSCM is the combination of the modeling technique of the finite element method (FEM) and the transfer technique of the transfer stiffness coefficient method (TSCM). FE-TSCM has the advantages of both FEM and FE-TSCM. In this paper, the authors formulate the computational algorithm for the static analysis of axisymmetric circular plates under lateral loading using FE-TSCM. The computational results for three computational models obtained by FE-TSCM are compared with those obtained by FEM in order to confirm the accuracy of FE-TSCM.

Prediction and Design of Edge Shape of Initial Strip for Thick Tube Roll Forming using Finite Element Method (유한요소해석을 이용한 후육관 롤포밍에서의 초기소재 에지 형상 예측과 설계)

  • Kim, Nak-Su;Lee, Seung-Yun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.4
    • /
    • pp.644-652
    • /
    • 2002
  • Increasing demands for Electric Resistance Welded pipes of high quality with thick wall require c lose investigations in edge deformation by slitting, strip deformation during break down farming, and difference of circumferential length. In order to obtain good quality of a welding zone, it is necessary to predict the edge shape of the initial strip. The modeling of the multi-pass thick tube roll forming process with rigid plastic finite element method ultra the edge shape prediction of an initial strip with 2nd-degree polynomial regression method are presented. Edge shapes of initial strip have been analyzed by the finite element method and designed by the regression method to satisfy the requirements in target fin pass. It is concluded that the proposed edge design method results in optimal edge shapes sat string the design requirements.

Fatigue life prediction for radial truck tires using a global-local finite element method

  • Jeong, Kyoung Moon;Beom, Hyeon Gyu;Kim, Kee-Woon;Cho, Jin-Rae
    • Interaction and multiscale mechanics
    • /
    • v.4 no.1
    • /
    • pp.35-47
    • /
    • 2011
  • A global-local finite element modeling technique is employed in this paper to predict the fatigue life of radial truck tires. This paper assumes that a flaw exists inside the tire, in the local model. The local model uses an FEM fracture analysis in conjunction with a global-local technique in ABAQUS. A 3D finite element local model calculates the energy release rate at the belt edge. Using the analysis of the local model, a study of the energy release rate is performed in the crack region and used to determine the crack growth rate analysis. The result considers how different driving conditions contribute to the detrimental effects of belt separation in truck tire failure. The calculation of the total mileage on four sizes of radial truck tires has performed on the belt edge separation. The effect of the change of belt width design on the fatigue lifetime of tire belt separation is discussed.

Finite element analysis and theoretical modeling of GFRP-reinforced concrete compressive components having waste tire rubber aggregates

  • Mohamed Hechmi El Ouni;Ali Raza
    • Steel and Composite Structures
    • /
    • v.52 no.1
    • /
    • pp.57-76
    • /
    • 2024
  • The management of waste tire rubber has become a pressing environmental and health issue, requiring sustainable solutions to mitigate fire hazards and conserve natural resources. The performance of waste materials in structural components needs to be investigated to fabricate sustainable structures. This study aims to investigate the behavior of glass fiber reinforced polymer (GFRP) reinforced rubberized concrete (GRRC) compressive components under compressive loads. Nine GRRC circular compressive components, varying in longitudinal and transverse reinforcement ratios, were constructed. A 3D nonlinear finite element model (FEM) was proposed by means of the ABAQUS software to simulate the behavior of the GRRC compressive components. A comprehensive parametric analysis was conducted to assess the impact of different parameters on the performance of GRRC compressive components. The experimental findings demonstrated that reducing the spacing of GFRP stirrups enhanced the ductility of GRRC compressive components, while the addition of rubberized concrete further improved their ductility. Failure in GRRC compressive components occurred in a compressive columnar manner, characterized by vertical cracks and increased deformability. The finite element simulations closely matched the experimental results. The proposed empirical model, based on 600 test samples and considering the lateral confinement effect of FRP stirrups, demonstrated higher accuracy (R2 = 0.835, MSE = 171.296, MAE = 203.549, RMSE = 195.438) than previous models.

Modeling large underground structures in rock formations

  • e Sousa, Luis Ribeiro;Miranda, Tiago
    • Interaction and multiscale mechanics
    • /
    • v.4 no.1
    • /
    • pp.49-64
    • /
    • 2011
  • A methodology for jointed rock mass characterization starts with a research based on geological data and tests in order to define the geotechnical models used to support the decision about location, orientation and shape of cavities. Afterwards a more detailed characterization of the rock mass is performed allowing the update of the geomechanical parameters defined in the previous stage. The observed results can be also used to re-evaluate the geotechnical model using inverse methodologies. Cases of large underground structures modeling are presented. The first case concerns the modeling of cavities in volcanic formations. Then, an application to a large station from the Metro do Porto project developed in heterogeneous granite formations is also presented. Finally, the last case concerns the modeling of large cavities for a hydroelectric powerhouse complex. The finite element method and finite difference method software used is acquired from Rocscience and ITASCA, respectively.

A new global/local analysis using MLS (Moving Least Square)-based finite elements (이동최소제곱 기반 유한요소를 이용한 새로운 다중 스케일 해석)

  • Lim, Jae-Hyuk;Im, Se-Young
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.405-410
    • /
    • 2007
  • We present a new global/local analysis with the aid of MLS(Moving Least Square)-based finite elements which can handle an arbitrary number of nodes on every element side. It give a great flexibility in constructing finite element meshes at the specified local regions without remeshing. Compared to other type global/local analysis, it does not require any superimposed mesh or need not solve the equilibrium equation twice as well as shows an excellent accuracy. To demonstrate the performance of proposed scheme, we will show several examples in relation to capturing highly local stress field.

  • PDF