• Title/Summary/Keyword: finite-element modeling

Search Result 2,200, Processing Time 0.035 seconds

Performance analysis of composite piezoceramic actuator by assumed strain elements (가정 변형률 요소를 이용한 복합재 압전작동기의 작동특성해석)

  • 김영성;이상기;박훈철;윤광준
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.461-469
    • /
    • 2002
  • This paper deals with a fully coupled piezoelectric-mechanical assumed strain solid element that can be used for geometric and material nonlinear modeling of thin piezoelectric actuators. Since the assumed strain solid element can alleviate locking, the element is suitable for performance analysis of very thin actuators without locking. A finite element code is developed based on the finite element formulation and validated by solving typical numerical examples such as bimorph and unimorph beams. Using thecode, we have conducted performance analysis for LIPCA actuator. The estimated actuation displacement of LIPCA agrees well with experimental data under low prescribed voltage.

  • PDF

Spectral Element Modeling for the Axially Moving Strings (축방향으로 이동하는 현에 대한 스펙트럴 요소 모델링)

  • Choi, Jung-Sik;Lee, U-Sik
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.1092-1096
    • /
    • 2009
  • The spectral element modeling is known to provide very accurate structural dynamic characteristics, while reducing the number of degree-of-freedom to resolve the computational and cost problems. Thus, the spectral element model with variational method for an axially moving string subjected to axial tension is developed in the present paper. The high accuracy of the spectral element model is the verified by comparing its solutions with the conventional finite element solutions and exact analytical solutions. The effects of the moving speed and axial tension the vibration characteristics, wave characteristics, and the static and dynamic stabilities of a moving string are investigated.

  • PDF

Non-linear modeling of masonry churches through a discrete macro-element approach

  • Panto, Bartolomeo;Giresini, Linda;Sassu, Mauro;Calio, Ivo
    • Earthquakes and Structures
    • /
    • v.12 no.2
    • /
    • pp.223-236
    • /
    • 2017
  • Seismic assessment and rehabilitation of Monumental Buildings constitute an important issue in many regions around the world to preserve cultural heritage. On the contrary, many recent earthquakes have demonstrated the high vulnerability of this type of structures. The high nonlinear masonry behaviour requires ad hoc refined finite element numerical models, whose complexity and computational costs are generally unsuitable for practical applications. For these reasons, several authors proposed simplified numerical strategies to be used in engineering practice. However, most of these alternative methods are oversimplified being based on the assumption of in-plane behaviour of masonry walls. Moreover, they cannot be used for modelling the monumental structures for which the interaction between plane and out-plane behaviour governs the structural response. Recently, an innovative discrete-modelling approach for the simulation of both in-plane and out of-plane response of masonry structures was proposed and applied to study several typologies of historic structures. In this paper the latter model is applied with reference to a real case study, and numerically compared with an advanced finite element modelling. The method is applied to the St.Venerio church in Reggiolo (Italy), damaged during the 2012 Emilia-Romagna earthquake and numerically investigated in the literature.

Trefftz Finite Element Method and Cavity Element Formulationfor Plane Elasticity Problems (평면 탄성문제의 트래프츠 유한요소법과 캐비티요소의 구성)

  • Lim, Jangkeun;Song, Kwansup
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.1
    • /
    • pp.163-171
    • /
    • 1996
  • For the effective analysis of two dimensional plane problems, Treffiz finite elements and cavity elements have been proposed. These element matrix equaitons were formulated on the basis of hybrid variational principle and Treffiz function sets derived consitstently from the complex theoy of plane elasticity. In order to suggest the accuracy chatacteristics of the proposed Treffiz elements typical plane problems were analyzed and these results were compared with ones obtained by using the conveintional displacement type elements. The accuracy of the proposed elements is less sensitive to the element size and shape than the conventional displacement type elements. These elements, being able to be formed with multi-nodes, give the convenient modeling of an analytic domain. The cavity elements give the comparatively exact values of stress concentration factors of stress intensity factors and can be effectively used for the analysis of mechanical stuctures containing various cavities.

The Strength Analysis of Passenger Car Seat Frame (승용차 시트프레임의 강도해석)

  • 임종명;장인식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.6
    • /
    • pp.205-212
    • /
    • 2003
  • This paper may provide a basic design data for the safer car seat mechanism and the quality of the material used by finding out the passenger's dynamic behavior when protected by seat belt during collision. A computer simulation with finite element method is used to accomplish this objective. At first, a detailed geometric model of the seat is constructed using CAD program. The formation of a finite element from a geometric data of the seat is carried out using Hyper-Mesh that is the commercial software for mesh generation and post processing. In addition to seat modeling, the finite element model of seat belt and dummy is formed using the same software. Rear impact analysis is accomplished using Pam-Crash with crash pulse. The part of the recliner and right frame is under big stress in rear crash analysis because the acceleration force is exerted on the back of the seat by dummy. The stress condition of the part of the bracket is checked as well because it is considered as an important variable on the seat design. Front impact model which including dummy and seal belt is analyzed. A Part of anchor buckle of seat frame has high stress distribution because of retraction force due to forward motion of dummy at the moment of collision. On the basis of the analysis result, remodeling and reanalysis works had been repeatedly done until a satisfactory result is obtained.

2D Finite Element Modeling of Bed Elevation Change in a Curved Channel (유한요소법을 이용한 만곡수로에서의 2차원 하상변동 수치모형)

  • Kim Tae Beom;Choi Sung-Uk;Min Kyung Duck
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.414-418
    • /
    • 2005
  • A finite element model is developed for the numerical simulation of bed elevation change in a curved channel. The SU/PG (Streamline-Upwind/Petrov-Galerkin) method is used to solve 2D shallow water equations and the BG (Bubnov-Galerkin) method is used for the Exner equation. For the time derivative terms, the Crank-Nicolson scheme is used. The developed model is a decoupled model in a sense that the bed elevation does not change simultaneously with the flow during the computational time step. The total load formula with is used for the sediment transport model. The slip conditions are described along the lateral boundaries. The effects of gravity force due to geometry change and the secondary flows in a curved channel are considered in the model. For the verification, the model is applied to two laboratory experiments. The first is $140^{\circ}$ bended channel data at Delft Hydraulics Laboratory and the second is $140^{\circ}$ bended channel data at Laboratory of Fluid Mechanics of the Delft University of Technology. The finite element grid is constructed with linear quadrilateral elements. It is found that the computed results are in good agreement with measured data, showing a point bar at the inner bank and a pool at the outer bank.

  • PDF