• 제목/요약/키워드: finite-element modeling

Search Result 2,200, Processing Time 0.03 seconds

A Research on the Verification Test Procedure for Quantitative Explosion Risk Assessment and Management of Offshore Installations (해양플랜트 폭발사고 위험도 평가/관리를 위한 실증시험기법에 관한 연구)

  • Kim, Bong Ju;Ha, Yeon Chul;Seo, Jung Kwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.3
    • /
    • pp.215-221
    • /
    • 2018
  • The structural design of offshore installations against explosions has been required to protect vital areas (e.g. control room, worker's area etc.) and minimize the damage from explosion accidents. Because the explosion accident will not only result in significant casualties and economic losses, but also cause serious pollution and damage to surrounding environment and coastal marine ecosystems. Over the past two decades, an incredible efforts was made to develop reliable methods to reduce and manage the explosion risk. Among the methods Quantitative Risk Assessment and Management (QRA&M) is the one of cutting-edge technologies. The explosion risk can be quantitatively assessed by the product of explosion frequency based on probability calculation and consequence analyzed using computer simulations, namely Computational Fluid Dynamics (CFD) and Finite Element Analysis (FEA). However to obtain reliable consequence analysis results by CFD and FEA, uncertainties associate with modeling and simulation are needed to be identified and validated by comparison with experimental data. Therefore, large-scaled explosion test procedure is developed in this study. And developed test procedure can be helpful to obtain precious test data for the validation of consequence analysis using computer simulations, and subsequently allow better assessment and management of explosion risks.

Long-Term Behavior of Geogrid Reinforced Soil Abutment - A Numerical Investigation (지오그리드 보강토 교대의 장기거동에 관한 수치해석 연구)

  • Yoo, Chung-Sik;Jeon, Han-Yong
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.1
    • /
    • pp.65-76
    • /
    • 2011
  • This paper presents the results of a numerical investigation on the long-term behavior of geosynthetic reinforced soil abutment. The investigation was carried out aiming at identifying the governing mechanisms of the long-term deformation of geosynthetic-reinforced soil abutment subjected to sustained loads during service life. A numerical modeling strategy was first established using the Singh-Mitchell creep model and the power law model, respectively, for the backfill and the geosyntehtic reinforcement. A parametric study on the creep properties of the backfill and the geosynthetic reinforcement was then conducted. The results indicated that a geosynthetic reinforced soil structure backfilled with marginal soil may exhibit substantial long-term deformation due to the creep effects caused by both the backfill soil and the geosynthetic reinforcement, the magnitude of which depends largely on the creep properties. This paper highlights the importance of considering the creep effect on load supporting geosynthetic reinforced soil structures when the long-term serviceability requirement is of prime importance.

A Study on the Mathematical Modeling of Human Pharyngeal Tissue Viscoelasticity (인두조직의 점 탄성특성의 수학적모델링에 관한 연구)

  • 김성민;김남현
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.5
    • /
    • pp.495-502
    • /
    • 1998
  • A mathematical model of viscoelasticity on the material property of human pharyngeal tissue utilizing Y.C. Fung's Quasi-linear viscoelastic theory is proposed based on cyclic load, stress relaxation, incremental load, and uniaxial tensile load tests. The material properties are characterized and compared with other biological materials' results. The mathematical model is proposed by combining two characteristic functions determined from the stress relaxation and uniaxial tensile load tests. The reduced stress relaxation function G(t) and elastic response function S(t) are obtained from stress relaxation test and uniaxial tensile load test results respectively. Then the model describing stress-time history of the tissue is implemented utilizing two functions. The proposed model is evaluated and validated by comparing the model's cyclic behaviour with experimental results. The model data could be utilized as an important information for constructing 3-dimensional biomechanical model of human pharynx using FEM(Finite Element Method).

  • PDF

INFLUENCE OF VARIOUS PROPERTIES OF POST AND CORE ON THE STRESS DISTRIBUTION IN ENDODONTICALLY TREATED TOOTH (다양한 포스트와 코어의 물성이 근관치료된 치근의 응력분산에 미치는 영향)

  • Cho Jin-Hyun;Lee Cheong-Hee
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.1
    • /
    • pp.10-19
    • /
    • 2006
  • Statement of problem : The various kinds of properties of post and core may affect the stress distribution to the root of endodontically treated teeth Purpose: To evaluate the influence of various kinds of properties of post and core to the stress distribution to the root of endodontically treated teeth. Material and methods: Mandibular first premolar, prepared by general shape of post and core with gold crown, was used to two dimensional axisymmetric modeling for finite element analysis. Then property values of 8 different kinds of post and core was substituted for each. Finally, stress distribution shown areas around the root of post and core was analysed after applying 50N of vortical and oblique load. Results: 1. Stress value of oblique load was much higher than the maximum stress value of vertical load. 2. Under oblique load, very concentrated stress was located on post periapical area and variations in stress were very severe. Contrary to this, stress distribution was relatively uniform in vertical load. 3. Post materials with higher elastic modulus showed relatively more apically focused stress, and post materials with lower elastic modulus showed stress focused on cervical area on the axial wall of post. 4. Stress change according to the properties of core was shown only in the cervical area of post and below core as the higher elastic modulus, then increased in stress. 5. Post and core with medium value of elastic modulus showed relatively uniform stress distribution. Conclusions: Post materials with higher elastic modulus showed relatively more apically focused stress, and post materials with lower elastic modulus showed stress focused on cervical area on the axial wall of post. Stress change according to the properties of core was shown only in the cervical area of post and below core.

Proposal of a piezoelectric floating mass transducer for implantable middle ear hearing devices (이식형 인공중이를 위한 압전 플로팅 매스 트랜스듀서의 제안)

  • Lee, Chang-Woo;Kim, Min-Kyu;Park, Il-Yong;Song, Byung-Seop;Roh, Yong-Rae;Cho, Jin-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.322-330
    • /
    • 2005
  • A new type of transducer, piezoelectric floating mass transducer (PFMT) which has advantages of piezoelectric and electromagnetic transducer has been proposed and implemented for the implantable middle ear hearing devices. By the uneven bonding of piezoelectric material to the inner bottom of transducer case, the PFMT can vibrate back-and-forth along the longitudinal axis of the transducer even though the piezoelectric material within the cylindrical case produces only the bilateral expansion and contraction according to the applied electrical signal. To improve efficiency of the PFMT, the multi-layered piezoelectric material has been adapted. The small number of components in the PFMT enables the simple manufacturing and the easy implanting into the middle ear. In order to examine the characteristics of vibration, mechanical modeling and finite element analyses of the proposed transducer have been performed. From the result of theoretical analyses and the measured data from the experiment, it is verified that the implemented PFMT can be used in implantable middle ear hearing devices.

An Application of Elasto-Plastic Model to Overhanging Geosynthetic-Reinforced Soil Structure (역경사형 토목섬유 보강토 구조물에 탄소성 모델의 적용)

  • Kim, Eun-Ra;Iizuka, Atsushi;Kim, You-Seong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.3 no.4
    • /
    • pp.3-12
    • /
    • 2004
  • In this paper, a mechanism of the soil structure reinforced by geosynthetics is discussed. The reinforcing mechanism is interpreted an effect arising from the reinforcement works so as to prevent the dilative deformation (negative dilatancy) of soil under shearing. A full-scale in-situ model test was carried out in Kanazawa of Japan(1994) and in the laboratory test the strength and the characteristics of deformation conducting a constant volume shear test are examined. The parameters needed in the FEM are also applied by using the experimental data. The elasto-plastic finite element simulation is carried out, and the results are quantitatively compared with that of experiment. As a results, it is known that the theoretical predictions could be explained effectively the experimental results which are obtained by a full-scale in-situ model test.

  • PDF

Three-dimensional Resistivity Inversion Including Topographic Effect (지형효과를 포함한 3차원 전기비저항 역산)

  • 박종오;김희준;송무영
    • The Journal of Engineering Geology
    • /
    • v.14 no.1
    • /
    • pp.21-28
    • /
    • 2004
  • Three-dimensional (3-D) resistivity inversion including a topographic effect can be considered theoretically to be the technique of acquiring the most accurate image in the interpretation of resistivity data, because it includes characteristic image that the actual subsurface structure is 3-D. In this study, a finite-element method was used as the numerical method in modeling, and the efficiency of Jacobian calculation has been maximized with sensitivity analysis for the destination block in inversion process. Also, during the iterative inversion, the resolution of inversion can be improved with the method of selecting the optimal value of Lagrange multiplier yielding minimum RMS(root mean square) error in the parabolic equation. In this paper, we present synthetic examples to compare the difference between the case which has the toprographic effect and the other case which has not the effect in the inversion process.

Computer Simulation for X-ray Breast Elastography (X선 유방 탄성 영상을 위한 컴퓨터 모의 실험)

  • Kim, Hyo-Geun;Aowlad Hossain, A.B.M.;Lee, Soo-Yeol;Cho, Min-Hyoung
    • Journal of Biomedical Engineering Research
    • /
    • v.32 no.2
    • /
    • pp.158-164
    • /
    • 2011
  • Breast cancer is the most frequently appearing cancer in women, these days. To reduce mortality of breast cancer, periodic check-up is strongly recommended. X-ray mammography is one of powerful diagnostic imaging systems to detect 50~100 um micro-calcification which is the early sign of breast cancer. Although x-ray mammography has very high spatial resolution, it is not easy yet to distinguish cancerous tissue from normal tissues in mammograms and new tissue characterizing methods are required. Recently ultrasound elastography technique has been developed, which uses the phenomenon that cancerous tissue is harder than normal tissues. However its spatial resolution is not enough to detect breast cancer. In order to develop a new elastography system with high resolution we are developing x-ray elasticity imaging technique. It uses the small differences of tissue positions with and without external breast compression and requires an algorithm to detect tissue displacement. In this paper, computer simulation is done for preliminary study of x-ray elasticity imaging. First, 3D x-ray breast phantom for modeling woman's breast is created and its elastic model for FEM (finite element method) is generated. After then, FEM experiment is performed under the compression of the breast phantom. Using the obtained displacement data, 3D x-ray phantom is deformed and the final mammogram under the compression is generated. The simulation result shows the feasibility of x-ray elasticity imaging. We think that this preliminary study is helpful for developing and verifying a new algorithm of x-ray elasticity imaging.

A Study on the Estimation of Homogeneous Physical Properties of Molten Carbonate Fuel Cell Stacks (용융탄산염형 연료전지 스택의 균질 물성치 추정에 관한 연구)

  • Lee, Sang-Wook;Suh, Yong-S.
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.7
    • /
    • pp.2939-2944
    • /
    • 2011
  • The performance and efficiency of a Molten Carbonate Fuel Cell system will improve with the aids of numerical simulations such as finite element analysis. For best simulation results, the virtual model must accurately reflect the actual model including the material properties. It is very difficult, however, to make a detailed numerical model of the stack that consists of hundreds of layers of unit cells composed of various materials like metal, ceramics, polymer, etc. Instead, a practical approach is to find a homogenized material property of the stack as a whole as an approximate replacement. In this paper, the compression ratio of a unit cell is introduced, and a new method is proposed to estimate the homogeneous material properties for both the active and the manifold regions of the stack under the assumption that the compressive deformation occurs only at the separators and matrices in the unit cells. The estimated properties are applied successfully to simulating an actual stack.

A Study on How to Reduce Vibration in order to Decrease the Cracks that Form on the Upper Floor of a Structure due to Continuous Dynamic Loading (반복되는 동하중에 의한 구조물 상부바닥 균열 감소를 위한 진동저감 연구)

  • Chun, Chong-Keun;Park, Sam-Jin;Park, Sang-Gon;Kim, Do-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.4
    • /
    • pp.1532-1538
    • /
    • 2011
  • In this study, we investigate the cracks that formed on the upper floor of the structures due to continuous dynamic loading. We explain the cause of floor slab cracks on the upper floor of the distribution center and discuss preventive measures that can enhance the center's functions and security. In order to explain how a forklift's excessive vibration can cause the cracks, we have measured and analyzed the vibration during a forklift's operation and discovered that the cracks form because the vibration exceeds the vibration criteria. Using a finite element modeling on such results, we have come up with optimal methods to reduce the vibration and confirmed their validity by measuring the vibration after implementing our methods.