• Title/Summary/Keyword: finite-element modeling

Search Result 2,200, Processing Time 0.028 seconds

Improvement of Dimensional Accuracy for a Solenoid Valve Case for an 8-Speed Automatic Transmission by Using Multistage Drawing (프로그레시브 공정을 이용한 8단 자동변속기용 솔레노이드 밸브케이스 치수정밀도 향상)

  • Kim, T.H.;Bae, W.B.;Bae, J.H.;Kim, C.
    • Transactions of Materials Processing
    • /
    • v.22 no.8
    • /
    • pp.442-449
    • /
    • 2013
  • The solenoid valve case of an 8-speed automatic transmission plays a role in maintaining the valve seal, which prevents an inflow of foreign substances into the transmission. The seal increases the reliability of the automatic transmission's performance. As a solution to pollution-related problems and to reduce fuel consumption, transmissions are being made with more gears to work more economically and have reduced fuel consumption. These newer transmission require greater dimensional tolerances and need to be manufactured with more precision. In the current study, the design of a multistage drawing considering both the product's height and limit draw ratio (LDR) of the material was performed using both a theoretical analysis and the expertise of industrial experts. The finite element modeling (FEM) simulation was performed using the commercial software, PAM-stamp, and tests of the dimensional measurements for a prototype were performed to verify the optimal progressive process.

Evaluation of the Biomechanical Characteristics of Ischemic Mitral Regurgitation: Effects of Asymmetric Papillary Muscle Displacement and Annular Dilation (허혈성 승모판막 폐쇄부전의 생체역학적 특성 분석: 비대칭적 유두근 변위와 판륜 확장의 영향)

  • Hong, Woojae;Kim, Hyunggun
    • Journal of the Korean Society of Visualization
    • /
    • v.16 no.2
    • /
    • pp.31-37
    • /
    • 2018
  • Ischemic mitral regurgitation (IMR) is the primary mitral valve (MV) pathology in the aftermath of myocardial infarction as a consequence of regional left ventricular (LV) remodeling. We investigated the effect of asymmetric papillary muscle (PM) displacement and annular dilation on IMR development. Virtual MV modeling was performed to create a normal human MV. Asymmetric PM displacement, asymmetric annular dilation, and the combination of these two pathologic characteristics were modeled. Dynamic finite element evaluation of MV function was performed across the complete cardiac cycle for the normal and three different IMR MV models. While the normal MV demonstrated complete leaflet coaptation, each pathologic MV model clearly revealed deteriorated leaflet coaptation and abnormal stress distributions. The pathologic MV model having both asymmetric PM displacement and annular dilation showed the worst leaflet malcoaptation. Simulation-based biomechanical evaluation of post-ischemic LV remodeling provides an excellent tool to better understand the pathophysiologic mechanism of IMR development.

Image-Based Computational Modeling of Porous Matrix Composites and Calculation of Poroelastic Coefficients (다공성 기지를 갖는 복합재의 이미지 기반 전산 모형화 및 기공 탄성 계수 산출)

  • Kim, Sung Jun;Shin, Eui Sup
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.5
    • /
    • pp.527-534
    • /
    • 2014
  • Poroelastic analyses of fiber-reinforced composites were performed using image-based computational models. The section image of a porous matrix was analyzed in order to investigate the porosity, number of pores, and distribution of pores. The resolution, location, and size of the section image were considered to quantify the effective elastic modulus, poroelastic parameter, and strain energy density using the image-based computational models. The poroelastic parameter was calculated from the effective elastic modulus and pore pressure-induced strain. In addition, the results of the poroelastic analyses were verified through representative volume elements by simplifying various pore configurations and arrangements.

A Study on the Simulation Model Verification for Performance Estimation of Torsion Beam Axle (토션빔액슬 성능 평가를 위한 해석 모델 검증에 관한 연구)

  • Choi, Sung-Jin;Park, Jung-Won;Jeon, Kwang-Ki;Lee, Dong-Jae;Choi, Gyoo-Jae;Park, Tae-Won
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.2
    • /
    • pp.107-113
    • /
    • 2006
  • The torsion beam axle type is widely used in the rear suspension for small passenger cars due to low cost, good performance, etc. To develop the torsion beam axle, it is necessary to estimate the characteristics of rear suspension from the design process. The characteristics estimation of the torsion beam axle is performed using FEM, dynamic simulation and is verified the real test. In this study, the natural frequency and roll stiffness of the torsion beam axle were measured by FEM, and the reliability of the FE model was evaluated according to the comparison of test data. This study presents a unique method for the finite element modeling and analysis of the torsion beam axle. The results of the FEA were verified using test data.

A study on the vibration analysis of automobile steering system and improvement of ride comfort (승용차 스티어링 칼럼 시스템의 진동해석과 승차감 개선에 관한 연구)

  • 김찬묵;임홍재;김도연;임승만;이외순;조항원
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.336-342
    • /
    • 1997
  • In this paper, in order to analyze dynamic characteristics of automobile steering system consisting of many components, natural frequencies and transfer functions of each component and total system are found on FFT by experiments. Then, the data are transmitted to commercial package program, CADA-PC. By analyzing the data, the mode shape of each natural frequency and damping values are obtained. Also, the function of rubber coupling in column and telescoping effects on system are considered. C.A.E commercial program are used to compare with the results of experiments. For finite element modeling, I-DEAS is used. Data processing and post processing are operated on NASTRAN and XL, respectively. The ball-bearing and the linkage of shaft with column are modeled by spring elements. Stiffness is modified from the results of experiments. The results of those show close agreement. In the mode shape of total system, wheel mode is dominant at lower frequency while the column mode is main mode at higher . The role of rubber coupling in vibration isolation is clear on mode shape. Telescoping function makes natural frequency of column changed.

  • PDF

Numerical Modeling for Cumulative Impact of Automotive Bumper (자동차 범퍼의 누적 충격 평가)

  • Kim, Heon-Young;Choi, Jong-Gil;Kim, Jung-Min;Lee, Kang-Wook;Yeo, Tae-Jung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.3
    • /
    • pp.29-34
    • /
    • 2007
  • Numerical analyses are carried out to evaluate the cumulative impact damage of an automotive front end bumper under the low speed crash events(CMVSS215) by using explicit code. Results of first impact simulation, which are deformed shape, thickness, stress tensors and strain tensors, are used as the initial conditions for a next impact simulation. Between the events, the residual vibration is damped out by using nodal damping, and then recovery after each event is evaluated by several methods, one of which is a springback analysis with implicite finite element analysis code. The coupled analysis scheme for the evaluation of cumulative impact damage is verified through the comparison with test results.

Design and Analysis of Rolled Rotor Switched Reluctance Motor

  • Eyhab, El-Kharashi
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.4
    • /
    • pp.472-481
    • /
    • 2006
  • In the conventional SRM with multi-rotor teeth, the air gap must be very small in order to drive the SRM in the saturation region that is necessary for high output torque. However, this leads to the problem of overheating; particularly in the case of a small-size SRM This paper discusses the design of a new type of SRM, namely the rolled rotor SRM. This new type does not require more than a single region of a very small airgap. This solves the overheating problem in the small size SRM. Moreover, the use of the rolled rotor, instead of the conventional toothed rotor, grades the airgap region in a fashion that gives a smooth variation in the reluctance and smooth shapes of both current and torque. The latter functional behavior is required in many applications such as servo applications. The paper first addresses general design steps of the rolled rotor SRM then proceeds to the simulation results of the new SRM in order to evaluate the advantages gained from the new design. In addition, this paper compares the torque ripples obtained from the new design to its equivalent conventional one.

Rainfall induced instability of mechanically stabilized earth embankments

  • Roy, Debasis;Chiranjeevi, K.;Singh, Raghvendra;Baidya, Dilip K.
    • Geomechanics and Engineering
    • /
    • v.1 no.3
    • /
    • pp.193-204
    • /
    • 2009
  • A 10.4-m high highway embankment retained behind mechanically stabilized earth (MSE) walls is under construction in the northeastern part of the Indian state of Bihar. The structure is constructed with compacted, micaceous, grey, silty sand, reinforced with polyester (PET) geogrids, and faced with reinforced cement concrete fascia panels. The connections between the fascia panels and the geogrids failed on several occasions during the monsoon seasons of 2007 and 2008 following episodes of heavy rainfall, when the embankment was still under construction. However, during these incidents the MSE embankment itself remained by and large stable and the collateral damages were minimal. The observational data during these incidents presented an opportunity to develop and calibrate a simple procedure for estimating rainfall induced pore water pressure development within MSE embankments constructed with backfill materials that do not allow unimpeded seepage. A simple analytical finite element model was developed for the purpose. The modeling results were found to agree with the observational and meteorological records from the site. These results also indicated that the threshold rainwater infiltration flux needed for the development of pore water pressure within an MSE embankment is a monotonically increasing function of the hydraulic conductivity of backfill. Specifically for the MSE embankment upon which this study is based, the analytical results indicated that the instabilities could have been avoided by having in place a chimney drain immediately behind the fascia panels.

Effects of traffic-induced vibrations on bridge-mounted overhead sign structures

  • Kim, Janghwan;Kang, Jun Won;Jung, Hieyoung;Pack, Seung-woo
    • Structural Engineering and Mechanics
    • /
    • v.55 no.2
    • /
    • pp.365-377
    • /
    • 2015
  • Large-amplitude vibration of overhead sign structures can cause unfavorable psychological responses in motorists, interfere with readability of the signs, and lead to fatigue cracking in the sign structures. Field experience in Texas suggests that an overhead sign structure can vibrate excessively when supported within the span of a highway bridge instead of at a bent. This study used finite element modeling to analyze the dynamic displacement response of three hypothetical sign structures subjected to truck-passage-induced vertical oscillations recorded for the girders from four actual bridges. The modeled sign bridge structures included several span lengths based on standard design practices in Texas and were mounted on precast concrete I-girder bridges. Results revealed that resonance with bridge girder vertical vibrations can amplify the dynamic displacement of sign structures, and a specific range of frequency ratios subject to undesirable amplification was identified. Based on these findings, it is suggested that this type of sign structure be located at a bridge bent if its vertical motion frequency is within the identified range of bridge structure excitation frequencies. Several alternatives are investigated for cases where this is not possible, including increasing sign structure stiffness, reducing sign mass, and installing mechanical dampers.

Seismic behavior of steel frames with lightweight-low strength industrialized infill walls

  • Zahrai, Seyed Mehdi;Khalili, Behnam Gholipour;Mousavi, Seyed Amin
    • Earthquakes and Structures
    • /
    • v.9 no.6
    • /
    • pp.1273-1290
    • /
    • 2015
  • JK wall is a shear wall made of lightweight EPS mortar and reinforced with a 3-D galvanized steel mesh, called JK panel, and truss-like stiffeners, called JK stiffeners. Earlier studies have shown that low strength lightweight concrete has the potential to be used in structural elements. In this study, seismic contribution of the JK infill walls surrounded by steel frames is numerically investigated. Adopting a hybrid numerical model, behavior envelop of the wall is derived from the general purpose finite element software, Abaqus. Obtained backbone would be implemented in the professional analytical software, SAP2000, in which through calibrated hysteretic parameters, cyclic behavior of the JK infill can be simulated. Through comparison with earlier experimental results, it turned out that the proposed hybrid modeling can simulate monotonic and cyclic behavior of JK walls with good accuracy. JK infills have a panel-type configuration which their dominant failure mode would be ductile in flexure. Finally technical and economical advantages of the proposed JK infills are assessed for two representative multistory buildings. It is revealed that JK infills can reduce maximum inter-story drifts as well as residual drifts at the expense of minor increase in the developed base shear.