• Title/Summary/Keyword: finite-element modeling

Search Result 2,200, Processing Time 0.03 seconds

Shape Optimization of Multilayer Bellows by Using Sequential Experimental Design (순차적 실험계획법을 적용한 다층관 벨로우즈 형상 최적설계)

  • Oh, Sang-Kyun;Lee, Kwang-Ki;Suh, Chang-Hee;Jung, Yun-Chul;Kim, Young-Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.9
    • /
    • pp.1007-1013
    • /
    • 2011
  • Because of their high flexibility and durability, multilayer bellows are manufactured for use in commercial vehicles, while single-layer bellows are manufactured for use in passenger vehicles. A study based on the finite element method (FEM) and shape optimization for the single-layer bellows has been actively performed; however, until now, a study based on the FEM has rarely been performed for the multilayer bellows with gaps between the layers. This paper presents a finite-element modeling scheme for the multilayer bellows to improve simulation reliability during the evaluation of stress and flexibility. For performing shape optimization for the multilayer bellows, DOE (design of experiment) and the Kriging metamodel followed by the D-optimal method are used.

Application of mesh-free smoothed particle hydrodynamics (SPH) for study of soil behavior

  • Niroumand, Hamed;Mehrizi, Mohammad Emad Mahmoudi;Saaly, Maryam
    • Geomechanics and Engineering
    • /
    • v.11 no.1
    • /
    • pp.1-39
    • /
    • 2016
  • The finite element method (FEM), discrete element method (DEM), and Discontinuous deformation analysis (DDA) are among the standard numerical techniques applied in computational geo-mechanics. However, in some cases there no possibility for modelling by traditional finite analytical techniques or other mesh-based techniques. The solution presented in the current study as a completely Lagrangian and mesh-free technique is smoothed particle hydrodynamics (SPH). This method was basically applied for simulation of fluid flow by dividing the fluid into several particles. However, several researchers attempted to simulate soil-water interaction, landslides, and failure of soil by SPH method. In fact, this method is able to deal with behavior and interaction of different states of materials (liquid and solid) and multiphase soil models and their large deformations. Soil indicates different behaviors when interacting with water, structure, instrumentations, or different layers. Thus, study into these interactions using the mesh based grids has been facilitated by mesh-less SPH technique in this work. It has been revealed that the fast development, computational sophistication, and emerge of mesh-less particle modeling techniques offer solutions for problems which are not modeled by the traditional mesh-based techniques. Also it has been found that the smoothed particle hydrodynamic provides advanced techniques for simulation of soil materials as compared to the current traditional numerical methods. Besides, findings indicate that the advantages of applying this method are its high power, simplicity of concept, relative simplicity in combination of modern physics, and particularly its potential in study of large deformations and failures.

Analysis of Effective Elastic Modulus and Interfacial Bond Strength of Aluminum Borate Whisker Reinforced Mg Matrix Composite by Using Three Dimensional Unit Cell Model (3차원 Unit Cell 모델을 이용한 알루미늄 보레이트 휘스커 강화 Mg 복합재료의 유효 탄성계수 및 계면강도의 분석)

  • Son, Jae Hyoung;Lee, Wook Jin;Park, Yong Ha;Park, Yong Ho;Park, Ik Min
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.5
    • /
    • pp.469-475
    • /
    • 2010
  • In this study, the interfacial bond strength of a squeeze infiltrated $Al_{18}B_{4}O_{33}$/AS52 Mg composite was investigated by using a finite element method. Three types of Mg composites with volume fractions of 15, 25 and 35% were fabricated. Three-dimensional models of the composite were developed by using a unit cell model in order to determine the effective elastic modulus of the metal matrix composite and the interfacial bond strength between the whisker and magnesium matrix. After modeling, numerical results were compared with the experimental tensile test results of $Al_{18}B_{4}O_{33}$/AS52 Mg composites. The results showed that the effective modulus of the composite strongly depended on the interfacial strength between the matrix and reinforcement. Based on the numerical and experimental findings, it was found that the strong interfacial bond was achieved by the interfacial reaction product of 30 nm thick MgO, which led to an improvement in the mechanical properties of the $Al_{18}B_{4}O_{33}$/AS52 Mg composites.

Interfacial Reaction and Mechanical Property of BGA Solder Joints with LTCC Substrate (LTCC기판과 BGA 솔더접합부의 계면반응 및 기계적 특성)

  • Yoo, Choong-Sik;Ha, Sang-Su;Kim, Bae-Kyun;Jang, Jin-Kyu;Seo, Won-Chan;Jung, Seung-Boo
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.3
    • /
    • pp.202-208
    • /
    • 2009
  • The effects of aging time on the microstructure and shear strength of the Low Temperature Co-fired Ceramic (LTCC)/Ag pad/Electroless Nickel Immersion Gold (ENIG)/BGA solder joints were investigated through isothermal aging at $150^{\circ}C$ for 1000 h with conventional Sn-37Pb and Sn-3Ag-0.5Cu. $Ni_3Sn_4$ intermetallic compound (IMC) layers was formed at the interface between Sn-37Pb solder and LTCC substrate as-reflowed state, while $(Ni,Cu)_3Sn_4$ IMC layer was formed between Sn-3Ag-0.5Cu solder and LTCC substrate. Additional $(Cu,Ni)_6Sn_5$ layer was found at the interface between the $(Ni,Cu)_3Sn_4$ layer and Sn-3Ag-0.5Cu solder after aging at $150^{\circ}C$ for 500 h. Thickness of the IMC layers increased and coarsened with increasing aging time. Shear strength of both solder joints increased with increasing aging time. Failure mode of BGA solder joints with LTCC substrate after shear testing revealed that shear strength of the joints depended on the adhesion between Ag metallization and LTCC. Fracture mechanism of Sn-37Pb solder joint was a mixture of ductile and pad lift, while that of Sn-3Ag-0.5Cu solder joint was a mixture of ductile and brittle $(Ni,Cu)_3Sn_4$ IMC fracture morphology. Failure mechanisms of LTCC/Ag pad/ENIG/BGA solder joints were also interpreted by finite element analyses.

Experimental and numerical study of an innovative 4-channels cold-formed steel built-up column under axial compression

  • G, Beulah Gnana Ananthi;Roy, Krishanu;Lim, James B.P.
    • Steel and Composite Structures
    • /
    • v.42 no.4
    • /
    • pp.513-538
    • /
    • 2022
  • This paper reports on experiments addressing the buckling and collapse behavior of an innovative built-up cold-formed steel (CFS) columns. The built-up column consists of four individual CFS lipped channels, two of them placed back-to-back at the web using two self-drilling screw fasteners at specified spacing along the column length, while the other two channels were connected flange-to-flange using one self-drilling screw fastener at specified spacing along the column length. In total, 12 experimental tests are reported, covering a wide range of column lengths from stub to slender columns. The initial geometric imperfections and material properties were determined for all test specimens. The effect of screw spacing, load-versus axial shortening behaviour and buckling modes for different lengths and screw spacing were investigated. Nonlinear finite element (FE) models were also developed, which included material nonlinearities and initial geometric imperfections. The FE models were validated against the experimental results, both in terms of axial capacity and failure modes of built-up CFS columns. Furthermore, using the validated FE models, a parametric study was conducted which comprises 324 models to investigate the effect of screw fastener spacing, thicknesses and wide range of lengths on axial capacity of back-to-back and flange-to-flange built-up CFS channel sections. Using both the experimental and FE results, it is shown that design in accordance with the American Iron and Steel Institute (AISI) and Australia/New Zealand (AS/NZS) standards is slightly conservative by 6% on average, while determining the axial capacity of back-to-back and flange-to-flange built-up CFS channel sections.

Numerical FEM assessment of soil-pile system in liquefiable soil under earthquake loading including soil-pile interaction

  • Ebadi-Jamkhaneh, Mehdi;Homaioon-Ebrahimi, Amir;Kontoni, Denise-Penelope N.;Shokri-Amiri, Maedeh
    • Geomechanics and Engineering
    • /
    • v.27 no.5
    • /
    • pp.465-479
    • /
    • 2021
  • One of the important causes of building and infrastructure failure, such as bridges on pile foundations, is the placement of the piles in liquefiable soil that can become unstable under seismic loads. Therefore, the overarching aim of this study is to investigate the seismic behavior of a soil-pile system in liquefiable soil using three-dimensional numerical FEM analysis, including soil-pile interaction. Effective parameters on concrete pile response, involving the pile diameter, pile length, soil type, and base acceleration, were considered in the framework of finite element non-linear dynamic analysis. The constitutive model of soil was considered as elasto-plastic kinematic-isotropic hardening. First, the finite element model was verified by comparing the variations on the pile response with the measured data from the centrifuge tests, and there was a strong agreement between the numerical and experimental results. Totally 64 non-linear time-history analyses were conducted, and the responses were investigated in terms of the lateral displacement of the pile, the effect of the base acceleration in the pile behavior, the bending moment distribution in the pile body, and the pore pressure. The numerical analysis results demonstrated that the relationship between the pile lateral displacement and the maximum base acceleration is non-linear. Furthermore, increasing the pile diameter results in an increase in the passive pressure of the soil. Also, piles with small and big diameters are subjected to yielding under bending and shear states, respectively. It is concluded that an effective stress-based ground response analysis should be conducted when there is a liquefaction condition in order to determine the maximum bending moment and shear force generated within the pile.

An algorithm for quantifying dynamic buckling and post-buckling behavior of delaminated FRP plates with a rectangular hole stiffened by smart (SMA) stitches

  • Soltanieh, Ghazaleh;Yam, Michael C.H.
    • Smart Structures and Systems
    • /
    • v.28 no.6
    • /
    • pp.745-760
    • /
    • 2021
  • Dynamic buckling of structure is one of the failure modes that needs to be considered since it may result in catastrophic failure of the structure in a short period of time. For a thin fiber-reinforced polymer (FRP) plate under compression, buckling is an inherent hazard which will be intensified by the existence of defects like holes, cracks, and delamination. On the other hand, the growth of the delamination is another prime concern for thin FRP plates. In the current paper, reinforcing the plates against buckling is realized by using SMA wires in the form of stitches. A numerical framework is proposed to simulate the dynamic instability emphasizing the effect of the SMA stitches in suppressing delamination growth. The suggested algorithm is more accurate than the other methods when considering the transformation point of the SMA wires and the modeling of the cohesive zone using simple and yet reliable technique. The computational design of the method by producing the line by line orders leads to a simple algorithm for simulating the super-elastic behavior. The Lagoudas constitutive model of the SMA material is implemented in the form of user material subroutines (VUMAT). The normal bilinear spring model is used to reproduce the cohesive zone behavior. The nonlinear finite element formulation is programmed into FORTRAN using the Newmark-beta numerical time-integration approach. The obtained results are compared with the results obtained by the finite element method using ABAQUS/Explicit solver. The obtained results by the proposed algorithm and those by ABAQUS are in good agreement.

Optimal Structural Design Framework of Composite Rotor Blades Using PSGA (PSGA를 이용한 복합재료 블레이드의 최적 구조설계 프레임워크 개발 연구)

  • Ahn, Joon-Hyek;Bae, Jae-Seong;Jung, Sung Nam
    • Composites Research
    • /
    • v.35 no.1
    • /
    • pp.31-37
    • /
    • 2022
  • In this study, an optimal structural design framework has been developed for the structural design of composite helicopter blades. The optimal design framework is constructed using PSGA (Particle Swarm assisted Genetic Algorithm), which combines the genetic algorithm and particle swarm optimizer. The optimization process consists of a finite element (FE) modeling over the blade section, two-dimensional (2D) cross-sectional FE analysis, and 1D rotating blade analysis. In the design process, the geometric curves and surfaces are formed using the B-spline scheme while discretizing the sections via a FE mesh generation program Gmsh. The blade cross-sections are created in accordance with the design variables when performing the blade structural analysis. The proposed optimization design framework is applied to a modernization of the HART II (Higher-harmonic Aeroacoustics Rotor Test II) blades. It is demonstrated that an improved blade design is reached through the current optimization framework with the satisfaction of all design requirements set for the study.

Experimental and numerical research on the behavior of steel-fiber-reinforced-concrete columns with GFRP rebars under axial loading

  • Iman Saffarian;Gholam Reza Atefatdoost;Seyed Abbas Hosseini;Leila Shahryari
    • Structural Engineering and Mechanics
    • /
    • v.86 no.3
    • /
    • pp.399-415
    • /
    • 2023
  • This paper presents the experimental and numerical evaluations on the circular SFRC columns reinforced GFRP rebars under the axial compressive loading. The test programs were designed to inquire and compare the effects of different parameters on the columns' structural behavior by performing experiments and finite element modeling. The research variables were conventional concrete (CC), fiber concrete (FC), types of longitudinal steel/GFRP rebars, and different configurations of lateral rebars. A total of 16 specimens were manufactured and categorized into four groups based on different rebar-concrete arrangements including GRCC, GRFC, SRCC, and SRFC. Adding steel fibers (SFs) into the concrete, it was essential to modify the concrete damage plastic (CDP) model for FC columns presented in the finite element method (FEM) using ABAQUS 6.14 software. Failure modes of the columns were similar and results of peak loads and corresponding deflections of compression columns showed a suitable agreement in tests and numerical analysis. The behavior of GFRP-RC and steel-RC columns was relatively linear in the pre-peak branch, up to 80-85% of their ultimate axial compressive loads. The axial compressive loads of GRCC and GRFC columns were averagely 80.5% and 83.6% of axial compressive loads of SRCC and SRFC columns. Also, DIs of GRCC and GRFC columns were 7.4% and 12.9% higher than those of SRCC and SRFC columns. Partially, using SFs compensated up to 3.1%, the reduction of the compressive strength of the GFRP-RC columns as compared with the steel-RC columns. The effective parameters on increasing the DIs of columns were higher volumetric ratios (up to 12%), using SFs into concrete (up to 6.6%), and spiral (up to 5.5%). The results depicted that GFRP-RC columns had higher DIs and lower peak loads compared with steel-RC columns.

Application of Patient-Specific 3D-Printed Orthopedic Splint for Bone Fracture in Small Breed Dogs

  • Kwangsik Jang;Eun Joo Jang;Yo Han Min;Kyung Mi Shim;Chunsik Bae;Seong Soo Kang;Se Eun Kim
    • Journal of Veterinary Clinics
    • /
    • v.40 no.4
    • /
    • pp.268-275
    • /
    • 2023
  • In this paper, we designed 3D-printed orthopedic splint models for patient-specific external coaptation on fracture healing and analyzed the stability of the models through finite element method (FEM) analysis under compressive load conditions. Polylactic acid (PLA) and acrylonitrile-butadiene-styrene (ABS) based 3D splint models of the thicknesses 1, 3, 5 and 7 mm were designed, and Peak von Mises stress (PVMS) and maximum displacement (MD) of the models were analyzed by FEM under compressive loads of 50, 100, 150, and 200 N. The FEM results indicated that PVMS and MD values, regardless of material, had a negative correlation with the thickness of the models and a positive correlation with the compressive load. There was a risk of splint deformation under conditions more extreme than 100 N with 5 mm thickness. For successful clinical application of 3D-printed orthopedic splints in veterinary medicine, it is recommended that the splint should be produced not less than 5 mm thickness. Also, it is expected to be stable when the splint is applied to situations with a compressive load of 100 N or less. There is an advantage of overcoming the limitations of the existing bandage method through 3D-printing technology as well as verifying the stability through 3D modeling before application. Such 3D printing technology will be widely used in veterinary medicine and various fields as well as orthopedics.