• Title/Summary/Keyword: finite-element modeling

Search Result 2,200, Processing Time 0.033 seconds

Does the prosthesis weight matter? 3D finite element analysis of a fixed implant-supported prosthesis at different weights and implant numbers

  • Tribst, Joao Paulo Mendes;Dal Piva, Amanda Maria de Oliveira;Borges, Alexandre Luiz Souto;Rodrigues, Vinicius Aneas;Bottino, Marco Antonio;Kleverlaan, Cornelis Johannes
    • The Journal of Advanced Prosthodontics
    • /
    • v.12 no.2
    • /
    • pp.67-74
    • /
    • 2020
  • PURPOSE. This study evaluated the influence of prosthesis weight and number of implants on the bone tissue microstrain. MATERIALS AND METHODS. Fifteen (15) fixed full-arch implant-supported prosthesis designs were created using a modeling software with different numbers of implants (4, 6, or 8) and prosthesis weights (10, 15, 20, 40, or 60 g). Each solid was imported to the computer aided engineering software and tetrahedral elements formed the mesh. The material properties were assigned to each solid with isotropic and homogeneous behavior. The friction coefficient was set as 0.3 between all the metallic interfaces, 0.65 for the cortical bone-implant interface, and 0.77 for the cancellous bone-implant interface. The standard earth gravity was defined along the Z-axis and the bone was fixed. The resulting equivalent strain was assumed as failure criteria. RESULTS. The prosthesis weight was related to the bone strain. The more implants installed, the less the amount of strain generated in the bone. The most critical situation was the use of a 60 g prosthesis supported by 4 implants with the largest calculated magnitude of 39.9 mm/mm, thereby suggesting that there was no group able to induce bone remodeling simply due to the prosthesis weight. CONCLUSION. Heavier prostheses under the effect of gravity force are related to more strain being generated around the implants. Installing more implants to support the prosthesis enables attenuating the effects observed in the bone. The simulated prostheses were not able to generate harmful values of peri-implant bone strain.

Dynamical Predictions of the Structural Connection by the Reduced Approach (축약법에 의한 구조물 결합부의 동적 거동 예측)

  • Yun, Seong-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.6
    • /
    • pp.589-596
    • /
    • 2014
  • Joints, fasteners or connected parts frequently have a significant effect on the dynamical behavior of assembled mechanical structures. Therefore, the analytical prediction of structural responses depends on the accuracy of joint modeling. This paper deals with the formulation and analysis of dynamic mechanism for joint flexibilities whose relevant magnitudes of stiffnesses are investigated by using linear and torsional springs. The equation of motion is derived by using a generic joint in the middle of clamped-clamped beam. A reanalysis due to changes in magnitudes of joint stiffnesses is based on the reduced analysis where the binomial series terms are used as basis vectors. The solution procedures are straightforward and the method can be readily used with a general finite element method. The computational effort needed by this approach is usually much smaller than the effort needed for complete vibration analysis. Two numerical examples show that accurate results are obtained efficiently by reducing the number of degree in the reduced model.

Eliminating concrete cover separation of NSM strengthened beams by CFRP end anchorage

  • Hosen, Md. Akter;Jumaat, Mohd Zamin;Islam, A.B.M. Saiful;Kamruzzaman, Mohamed;Huda, Md. Nazmul;Soeb, Mahmudur Rahman
    • Structural Engineering and Mechanics
    • /
    • v.56 no.6
    • /
    • pp.899-916
    • /
    • 2015
  • Upgrading or strengthening of existing reinforced concrete (RC) infrastructure is an emerging demand nowadays. Near Surface Mounted (NSM) technique is very promising approach for flexural strengthening of RC members. However, premature failure such as concrete cover separation failure have been a main concern in utilizing this technique. In this study, U-wrap end anchorage with carbon fiber reinforced polymer (CFRP) fabrics is proposed to eliminate the concrete cover separation failure. Experimental programs were conducted to the consequence of U-wrap end anchorage on the flexurally strengthened RC beams with NSM-steel. A total of eight RC rectangular beam specimens were tested. One specimen was kept unstrengthened as a reference; three specimens were strengthened with NSM-steel bars and the remaining four specimens were strengthened with NSM-steel bars and U-wrap end anchorage using CFRP fabrics. A 3D non-linear finite element model (FEM) was developed to simulate the flexural response of the tested specimens. It is revealed that NSM-steel (with and without end-anchors) significantly improved the flexural strength; moreover decreased deflection and strains compared with reference specimen. Furthermore, NSM-steel with end anchorage strengthened specimens revealed the greater flexural strength and improve failure modes (premature to flexure) compared with the NSM-steel without end anchorage specimens. The results also ensured that the U-wrap end anchorage completely eliminate the concrete cover separation failure.

Numerical evaluation of deformation capacity of laced steel-concrete composite beams under monotonic loading

  • Thirumalaiselvi, A.;Anandavalli, N.;Rajasankar, J.;Iyer, Nagesh R.
    • Steel and Composite Structures
    • /
    • v.20 no.1
    • /
    • pp.167-184
    • /
    • 2016
  • This paper presents the details of Finite Element (FE) analysis carried out to determine the limiting deformation capacity and failure mode of Laced Steel-Concrete Composite (LSCC) beam, which was proposed and experimentally studied by the authors earlier (Anandavalli et al. 2012). The present study attains significance due to the fact that LSCC beam is found to possess very high deformation capacity at which range, the conventional laboratory experiments are not capable to perform. FE model combining solid, shell and link elements is adopted for modeling the beam geometry and compatible nonlinear material models are employed in the analysis. Besides these, an interface model is also included to appropriately account for the interaction between concrete and steel elements. As the study aims to quantify the limiting deformation capacity and failure mode of the beam, a suitable damage model is made use of in the analysis. The FE model and results of nonlinear static analysis are validated by comparing with the load-deformation response available from experiment. After validation, the analysis is continued to establish the limiting deformation capacity of the beam, which is assumed to synchronise with tensile strain in bottom cover plate reaching the corresponding ultimate value. The results so found indicate about $20^{\circ}$ support rotation for LSCC beam with $45^{\circ}$ lacing. Results of parametric study indicate that the limiting capacity of the LSCC beam is more influenced by the lacing angle and thickness of the cover plate.

Active shape control of a cantilever by resistively interconnected piezoelectric patches

  • Schoeftner, J.;Buchberger, G.
    • Smart Structures and Systems
    • /
    • v.12 no.5
    • /
    • pp.501-521
    • /
    • 2013
  • This paper is concerned with static and dynamic shape control of a laminated Bernoulli-Euler beam hosting a uniformly distributed array of resistively interconnected piezoelectric patches. We present an analytical one-dimensional model for a laminated piezoelectric beam with material discontinuities within the framework of Bernoulli-Euler and extent the model by a network of resistors which are connected to several piezoelectric patch actuators. The voltage of only one piezoelectric patch is prescribed: we answer the question how to design the interconnected resistive electric network in order to annihilate lateral vibrations of a cantilever. As a practical example, a cantilever with eight patch actuators under the influence of a tip-force is studied. It is found that the deflection at eight arbitrary points along the beam axis may be controlled independently, if the local action of the piezoelectric patches is equal in magnitude, but opposite in sign, to the external load. This is achieved by the proper design of the resistive network and a suitable choice of the input voltage signal. The validity of our method is exact in the static case for a Bernoulli-Euler beam, but it also gives satisfactory results at higher frequencies and for transient excitations. As long as a certain non-dimensional parameter, involving the number of the piezoelectric patches, the sum of the resistances in the electric network and the excitation frequency, is small, the proposed shape control method is approximately fulfilled for dynamic load excitations. We evaluate the feasibility of the proposed shape control method with a more refined model, by comparing the results of our one-dimensional calculations based on the extended Bernoulli-Euler equations to three-dimensional electromechanically coupled finite element results in ANSYS 12.0. The results with the simple Bernoulli-Euler model agree well with the three-dimensional finite element results.

Experimental and numerical study on large-curvature curved composite box girder under hogging moment

  • Zhu, Li;Wang, Jia J.;Zhao, Guan Y.;Huo, Xue J.;Li, Xuan
    • Steel and Composite Structures
    • /
    • v.37 no.2
    • /
    • pp.117-136
    • /
    • 2020
  • Curved steel-concrete composite box girder has been widely adopted in urban overpasses and ramp bridges. In order to investigate its mechanical behavior under complicated and combined bending, shear and torsion load, two large-curvature composite box girders with interior angles of 25° and 45° were tested under static hogging moment. Based on the strain and deflection measurement on critical cross-sections during the static loading test, the failure mode, cracking behavior, load-displacement relationship, and strain distribution in the steel plate and rebar were investigated in detail. The test result showed the large-curvature composite box girders exhibited notable shear lag in the concrete slab and steel girder. Also, the constraint torsion and distortion effect caused the stress measured at the inner side of the composite beam to be notably higher than that of the outer side. The strain distribution in the steel web was approximately linear; therefore, the assumption that the plane section remains plane was approximately validated based on strain measurement at steel web. Furthermore, the full-process non-linear elaborate finite element (FE) models of the two specimens were developed based on commercial FE software MSC.MARC. The modeling scheme and constitutive model were illustrated in detail. Based on the comparison between the FE model and test results, the FE model effectively simulated the failure mode, the load-displacement curve, and the strain development of longitudinal rebar and steel girder with sufficient accuracy. The comparison between the FE model and the test result validated the accuracy of the developed FE model.

Effects of PZ Strength on Cyclic Seismic Performance of RBS Steel Moment Connections (RBS 철골모멘트접합부의 내진성능에 대한 패널존 강도의 영향)

  • Lee, Cheol-Ho;Kim, Jae-Hoon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.3 s.49
    • /
    • pp.149-158
    • /
    • 2006
  • The reduced beam section (RBS) steel moment connection has performed well in past numerous tests. However there still remain several design issues that should be further examined. One such issue on RBS connection performance is the panel zone strength. Although a significant amount of test data are available, a specific recommendation for a desirable range of panel zone strength versus beam strength has yet to be proposed. In this paper, the effects of panel zone strength on the cyclic performance of RBS connection are investigated based on the available test database from comprehensive independent testing programs. A criterion for a balanced panel zone strength that assures sufficient plastic rotation capacity while reducing the amount of beam buckling is proposed. Numerical studies to supplement the test results are then presented based on the validated finite element analysis. Satisfactory numerical simulation achieved in this study also indicates that numerical analysis based on quality finite element modeling can supplement or replace, at least in part, the costly full-scale cyclic testing of steel moment connections.

Analysis of composite girders with hybrid GFRP hat-shape sections and concrete slab

  • Alizadeh, Elham;Dehestani, Mehdi
    • Structural Engineering and Mechanics
    • /
    • v.54 no.6
    • /
    • pp.1135-1152
    • /
    • 2015
  • Most of current bridge decks are made of reinforced concrete and often deteriorate at a relatively rapid rate in operational environments. The quick deterioration of the deck often impacts other critical components of the bridge. Another disadvantage of the concrete deck is its high weight in long-span bridges. Therefore, it is essential to examine new materials and innovative designs using hybrid system consisting conventional materials such as concrete and steel with FRP plates which is also known as composite deck. Since these decks are relatively new, so it would be useful to evaluate their performances in more details. The present study is dedicated to Hat-Shape composite girder with concrete slab. The structural performance of girder was evaluated with nonlinear finite element method by using ABAQUS and numerical results have been compared with experimental results of other researches. After ensuring the validity of numerical modeling of composite deck, parametric studies have been conducted; such as investigating the effects of constituent properties by changing the compressive strength of concrete slab and Elasticity modulus of GFRP materials. The efficacy of the GFRP box girders has been studied by changing GFRP material to steel and aluminum. In addition, the effect of Cross-Sectional Configuration has been evaluated. It was found that the behavior of this type of composite girders can be studied with numerical methods without carrying out costly experiments. The material properties can be modified to improve ultimate load capacity of the composite girder. strength-to-weight ratio of the girder increased by changing the GFRP material to aluminum and ultimate load capacity enhanced by deformation of composite girder cross-section.

Numerical analysis of channel connectors under fire and a comparison of performance with different types of shear connectors subjected to fire

  • Shahabi, S.E.M.;Ramli Sulong, N.H.;Shariati, M.;Mohammadhassani, M.;Shah, S.N.R.
    • Steel and Composite Structures
    • /
    • v.20 no.3
    • /
    • pp.651-669
    • /
    • 2016
  • The behavior of shear connectors plays a significant role in maintaining the required strength of a composite beam in normal and hazardous conditions. Various types of shear connectors are available and being utilized in the construction industry according to their use. Channel connectors are a suitable replacement for conventional shear connectors. These connectors have been tested under different types of loading at ambient temperature; however, the behavior of these connectors at elevated temperatures has not been studied. This investigation proposes a numerical analysis approach to estimate the behavior of channel connectors under fire and compare it with the numerical analysis performed in headed stud and Perfobond shear connectors subjected to fire. This paper first reviews the mechanism of various types of shear connectors and then proposes a non-linear thermo-mechanical finite element (FE) model of channel shear connectors embedded in high-strength concrete (HSC) subjected to fire. Initially, an accurate nonlinear FE model of the specimens tested at ambient temperature was developed to investigate the strength of the channel-type connectors embedded in an HSC slab. The outcomes were verified with the experimental study performed on the testing of channel connectors at ambient temperature by Shariati et al. (2012). The FE model at ambient temperature was extended to identify the behavior of channel connectors subjected to fire. A comparative study is performed to evaluate the performance of channel connectors against headed stud and Perfobond shear connectors. The channel connectors were found to be a more economical and easy-to-apply alternative to conventional shear connectors.

Mechanical performances of concrete beams with hybrid usage of steel and FRP tension reinforcement

  • Bui, Linh V.H.;Stitmannaithum, Boonchai;Ueda, Tamon
    • Computers and Concrete
    • /
    • v.20 no.4
    • /
    • pp.391-407
    • /
    • 2017
  • Fiber reinforced polymer (FRP) bars have been recently used to reinforce concrete members in flexure due to their high tensile strength and especially in corrosive environments to improve the durability of concrete structures. However, FRPs have a low modulus of elasticity and a linear elastic behavior up to rupture, thus reinforced concrete (RC) components with such materials would exhibit a less ductility in comparison with steel reinforcement at the similar members. There were several studies showed the behavior of concrete beams with the hybrid combination of steel and FRP longitudinal reinforcement by adopting the experimental and numerical programs. The current study presents a numerical and analytical investigation based on the data of previous researches. Three-dimensional (3D) finite element (FE) models of beams by using ANSYS are built and investigated. In addition, this study also discusses on the design methods for hybrid FRP-steel beams in terms of ultimate moment capacity, load-deflection response, crack width, and ductility. The effects of the reinforcement ratio, concrete compressive strength, arrangement of reinforcement, and the length of FRP bars on the mechanical performance of hybrid beams are considered as a parametric study by means of FE method. The results obtained from this study are compared and verified with the experimental and numerical data of the literature. This study provides insight into the mechanical performances of hybrid FRP-steel RC beams, builds the reliable FE models which can be used to predict the structural behavior of hybrid RC beams, offers a rational design method together with an useful database to evaluate the ductility for concrete beams with the combination of FRP and steel reinforcement, and motivates the further development in the future research by applying parametric study.