• Title/Summary/Keyword: finite-element modeling

Search Result 2,200, Processing Time 0.03 seconds

Study on Surge Voltage Distribution Design for UHV Transformer Windings by Finite Element Method (유한요소법에 의한 초고압변압기권선의 충격파전위분포설계에 관한 연구)

  • 황영문;이일천
    • 전기의세계
    • /
    • v.28 no.11
    • /
    • pp.45-51
    • /
    • 1979
  • Finte element methods are developed for the initial distribution problems which contain the surge potential circuits of high voltage transformer windings. The initial distribution of surge voltages in transformer windings are useful to the work to a practical engineering basis. However, the conventional methods of analyzing them so far are much complicated for practical designs. In this paper, the ability to solve surge potential field problems underlies the development of descreting methods to a lodal capacitive distribution-coefficients for determing the surge voltage relationship among a set of transformer coils. A practical example-the modeling of an antioscillation shield coil winding and hisercap winding is used to illustrate and evaluate these methods.

  • PDF

Finite element modeling and dynamic characteristic analysis of the tilting turret slide system (틸팅터릿 이송시스템의 유한요소 모델링 및 동특성 해석)

  • 정상화;김상석
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.188-192
    • /
    • 2000
  • In multi-purpose lathe, the design of tilting turret slide system has an important and critical role to enhance accuracy of the machining process. Tilting turret unit is traveled by 3-axis slide systems. There is a need to design this part very carefully. In this research, 3-axis sliding system with tilting turret is modeled by considering the element dividing, material properties, and boundary conditions using MSC/PATRAN. Mode and frequency analysis of each structures such as saddle, careg, and turret are simulated by MSC/NASTRAN, for the purpose of developing the effective design. The results of mode analysis and frequency analysis are visualized with PATRAN, and the mothod which can solve the resornance problem by eigenvalues and eigenvectors of each axe is developed as well.

  • PDF

A study on the weld nugget formation in resistance spot welding of aluminum alloy (알루미늄 합금의 저항 점 용접시 용접너깃의 형성에 대한 연구)

  • 나석주;오세진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.5
    • /
    • pp.661-669
    • /
    • 1986
  • In this study, the resistance spot welding process of an aluminum alloy was analyzed through the numerical simulation including the electric contact resistance and the heat generation in the electrode. The finite element model was used to solve the electro-thermal responses in weld cycles. The resistance of the contact area was represented as the contact element modeling, but the thermal resistance between the contact surfaces was neglected. Welding tests of Alclad 2024-T3 aluminum alloy were made not only to get the input data for the numerical simulation, but also to compare the numerical results. The contact resistance was determined initially by the contact resistance tests and assumed to decay exponentially up to the solidus temperature. The temperature distributions and dynamic resistance obtained numerically were in good agreement with the experimental results. Numerical results revealed that nugget growth depends mainly on the heat generated in the workpiece and its contact area. The heat generated in the electrode has, however, only a little effect on the nugget growth, and the heat generation in the electrode-workpiece interface is initially high but decrease repidly.

Effect of Fluid Mesh Modeling on Surface Ship Shock Response under Underwater Explosion

  • Lee, Sang-Gab;Kwon, Jeong-Il;Chung, Jung-Hoon
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.04a
    • /
    • pp.351-358
    • /
    • 2001
  • In this study, for the investigation of effects of several parameters, such as fluid mesh boundary size, cylinder or block shape, dimensions of depth, breadth and length at free suface, and fluid mesh element size to the depth direction on a reliable shock response of finite element model under underwater explosion with consideration of the bulk cavitation analysis of a simplified surface ship was carried out using the LS-DYNA3D/USA code. The shock responses were not much affected by the fluid mesh parameters. The computational time was greatly dependent on the number of DAA boundary segments. It is desirable to reduce the DAA boundary segments in the fluid mesh model, and it is not necessary to cover the fluid mesh boundary to or beyond the bulk cavitation zone just for the concerns about an initial shock wave response. It is also the better way to prefer cylinder type of the fluid mesh model to the block one.

  • PDF

Automatic Mesh Generation System for a Novel FEM Modeling Based on Fuzzy Theory (퍼지이론을 이용한 FEM 모델링을 위한 자동 요소분할 시스템)

  • Lee Joon-Seong;Lee Yang-Chang;Choi Yoon-Jong
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.04a
    • /
    • pp.139-142
    • /
    • 2005
  • This paper describes an automatic finite element (FE) mesh generation for three-dimensional structures consisting of free-form surfaces. This mesh generation process consists of three subprocesses: (a) definition of geometric model, i.e. analysis model, (b) generation of nodes, and (c) generation of elements. One of commercial sol id modelers is employed for three-dimensional sol id structures. Node is generated if its distance from existing node points is similar to the node spacing function at the point. The node spacing function is well control led by the fuzzy knowledge processing. The Delaunay method is introduced as a basic tool for element generation. Automatic generation of FE meshes for three-dimensional sol id structures holds great benefits for analyses. Practical performances of the present system are demonstrated through several mesh generations for three-dimensional complex geometry.

  • PDF

Dynamic Characteristic Analysis of Tilting Turret Systems Using Finite Element Modeling (유한요소 모델링을 이용한 틸팅터릿 시스템의 진동특성해석)

  • 정상화;김재열;김상석;나윤철
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.5
    • /
    • pp.60-70
    • /
    • 2001
  • In multi-purpose lathe, the design of tilting turret slide system has an important and critical role to enhance accuracy of the machining process. Tilting turret unit is traveled by 3-axis slide systems. There is a need to design this part very carefully. In this research, 3-axis sliding system with tilting turret unit is modeled by considering the element dividing, material proprties, and boundary conditions with PATRAN. Normal mode and frequency analysis of each structures such as saddle, cared, and turret are simulated by NASTRAN, for the purpose of developing the effective design. The results of mode analysis and frequency analysis are visualized with PATRAN, and the design method which can solve the resornance problem by eigenvalues and eigenvectors of each axis is developed as well.

  • PDF

Effect of local web buckling on the cyclic behavior of reduced web beam sections (RWBS)

  • Akrami, Vahid;Erfani, Saeed
    • Steel and Composite Structures
    • /
    • v.18 no.3
    • /
    • pp.641-657
    • /
    • 2015
  • Application of reduced web beam section (RWBS) as a sacrificial fuse element has become a popular research field in recent years. Weakening of beam web in these connections may cause local web buckling around the opening area which can affect cyclic behavior of connection including: maximum load carrying capacity, strength degradation rate, dissipated energy, rotation capacity, etc. In this research, effect of local web buckling on the cyclic behavior of RWBS connections is investigated using finite element modeling (FEM). For this purpose, a T-shaped moment connection which has been tested under cyclic loading by another author is used as the reference model. Fracture initiation in models is simulated using Cyclic Void Growth Model (CVGM) which is based on micro-void growth and coalescence. Included in the results are: effect of opening corner radii, opening dimensions, beam web thickness and opening reinforcement. Based on the results, local web buckling around the opening area plays a significant role on the cyclic behavior of connection and hence any parameter affecting the local web buckling will affect entire connection behavior.

Comparison of simplified model and FEM model in coupled analysis of floating wind turbine

  • Kim, Byoung Wan;Hong, Sa Young;Sung, Hong Gun;Hong, Seok Won
    • Ocean Systems Engineering
    • /
    • v.5 no.3
    • /
    • pp.221-243
    • /
    • 2015
  • This paper compares simplified and finite element method (FEM) models for tower and blade in dynamic coupled analysis of floating wind turbine. A SPAR type wind turbine with catenary mooring lines is considered in numerical analysis. Floating body equation is derived using boundary element method (BEM) and convolution. Equations for mooring line, tower and blade are formulated with theories of catenary, elastic beam and aerodynamic rotating beam, respectively and FEM is applied in the formulation. By combining the equations, coupled solutions are calculated. Tower or blade may be assumed rigid or lumped body for simplicity in modeling. By comparing floating body motions, mooring line tensions and tower stresses with the simple model and original FEM model, the effect of including or neglecting elastic, rotating and aerodynamic behavior of tower and blade is discussed.

Flexural strength of concrete-galvalume composite beam under elevated temperatures

  • Maryoto, Agus;Lie, Han Ay;Jonkers, Hendrik Marius
    • Computers and Concrete
    • /
    • v.27 no.1
    • /
    • pp.13-20
    • /
    • 2021
  • In this paper, the elevated temperature on a concrete-galvalume composite beam's flexural strength based on the numerical and experimental methods is investigated. The strategy is to perform modeling and simulation of the flexural test based on finite element method (FEM) at room temperature and validate its results to experimental data at the same temperature. When the numerical model was proven valid, the model was utilized to simulate the effect of elevated temperatures on the composite element. The study concludes that the flexural strength of the beam decreases at higher temperature. Additionally, it was shown that cracking moments is susceptible to temperature fluctuation and the failure modes are sensitive concerning the elevated temperature.

Numerical evaluating for the rigid and semi-rigid connection of I-Shaped beams to tubular columns

  • Shohreh Sohaei;Mehrzad TahamouliRoudsari;Parham Memarzadeh
    • Steel and Composite Structures
    • /
    • v.51 no.3
    • /
    • pp.305-323
    • /
    • 2024
  • Previous experimental studies have effectively demonstrated the remarkable efficiency of the stiffened channel link in connecting circular columns and I-shaped beams. This research aims to present design criteria and assess the seismic properties of this specific connection type through numerical modeling. Various parameters, including stiffener type and geometric properties of the stiffened channel element, were duly taken into account. The findings from over 136 nonlinear finite element analyses (FEAs) reveal that the recommended detailing scheme reliably satisfies all the regulations specified for rigid beam-to-column connections in special moment frames.