• Title/Summary/Keyword: finite-element model updating

Search Result 206, Processing Time 0.026 seconds

Load rating of box girder bridges based on rapid testing using moving loads

  • Hong Zhou;Dong-Hui Yang;Ting-Hua Yi;Hong-Nan Li
    • Smart Structures and Systems
    • /
    • v.32 no.6
    • /
    • pp.371-382
    • /
    • 2023
  • Box girder bridges are now widely used in bridge construction, and it is necessary to perform load rating regularly to evaluate the load capacity of box girder bridges. Load testing is a common measure for load rating. However, the bridge must be loaded by many trucks under different loading conditions, which is time-consuming and laborious. To solve this problem, this paper proposes a load rating method for box girder bridges based on rapid moving loads testing. The method includes three steps. First, the quasi-influence factors of the bridge are obtained by crossing the bridge with rapidly moving loads, and the structural modal parameters are simultaneously obtained from the dynamic data to supplement. Second, an objective function is constructed, consisting of the quasi-influence factors at several measurement points and structural modal parameters. The finite element model for load rating is then updated based on the Rosenbrock method. Third, on this basis, a load rating method is proposed using the updated model. The load rating method proposed in this paper can considerably reduce the time duration of traditional static load testing and effectively utilize the dynamic and static properties of box girder bridges to obtain an accurate finite element model. The load capacity obtained based on the updated model can avoid the inconsistency of the evaluation results for the different structural members using the adjustment factors specified in codes.

Structural Identification for Structural Health Monitoring of Long-span Bridge - Focusing on Optimal Sensing and FE Model Updating - (장대교량의 구조 건전도 모니터링을 위한 구조식별 기술 - 최적 센싱 및 FE 모델 개선 중심으로 -)

  • Heo, Gwanghee;Jeon, Joonryong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.12
    • /
    • pp.830-842
    • /
    • 2015
  • This paper aims to develop a SI(structural identification) technique using the kinetic energy optimization technique(KEOT) and the direct matrix updating method(DMUM) to decide on optimal location of sensors and to update FE model respectively, which ultimately contributes to a composition of more effective SHM. Owing to the characteristic structural flexing behavior of cable bridges, which makes them vulnerable to any vibration, systematic and continuous structural health monitoring (SHM) is pivotal for them. Since it is necessary to select optimal measurement locations with the fewest possible measurements and also to accurately assess the structural state of a bridge for the development of an effective SHM, a SI technique is as much important to accurately determine the modal parameters of the current structure based on the data optimally obtained. In this study, the KEOT was utilized to determine the optimal measurement locations, while the DMUM was utilized for FE model updating. As a result of experiment, the required number of measurement locations derived from KEOT based on the target mode was reduced by approximately 80 % compared to the initial number of measurement locations. Moreover, compared to the eigenvalue of the modal experiment, an improved FE model with a margin of error of less than 1 % was derived from DMUM. Finally, the SI technique for long-span bridges proposed in this study, which utilizes both KEOT and DMUM, is proven effective in minimizing the number of sensors while accurately determining the structural dynamic characteristics.

Numerical and experimental verifications on damping identification with model updating and vibration monitoring data

  • Li, Jun;Hao, Hong;Fan, Gao;Ni, Pinghe;Wang, Xiangyu;Wu, Changzhi;Lee, Jae-Myung;Jung, Kwang-Hyo
    • Smart Structures and Systems
    • /
    • v.20 no.2
    • /
    • pp.127-137
    • /
    • 2017
  • Identification of damping characteristics is of significant importance for dynamic response analysis and condition assessment of structural systems. Damping is associated with the behavior of the energy dissipation mechanism. Identification of damping ratios based on the sensitivity of dynamic responses and the model updating technique is investigated with numerical and experimental investigations. The effectiveness and performance of using the sensitivity-based model updating method and vibration monitoring data for damping ratios identification are investigated. Numerical studies on a three-dimensional truss bridge model are conducted to verify the effectiveness of the proposed approach. Measurement noise effect and the initial finite element modelling errors are considered. The results demonstrate that the damping ratio identification with the proposed approach is not sensitive to the noise effect but could be affected significantly by the modelling errors. Experimental studies on a steel planar frame structure are conducted. The robustness and performance of the proposed damping identification approach are investigated with real measured vibration data. The results demonstrate that the proposed approach has a decent and reliable performance to identify the damping ratios.

Estimating Tensile Force of Hangers in Suspension Bridges Using SI Technique (SI 기법을 이용한 현수교 행어케이블의 장력 추정)

  • Park Tae-Hyo;Moon Seok-Yong;Kim Byeong-Hwa
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.786-793
    • /
    • 2006
  • For the purpose of developing a vibration-based tension force evaluation procedure for hangers in suspension bridges, a 3D finite element model of hangers is constructed in this paper. With the developed finite element formulation, a frequency-based sensitivity-updating algorithm is applied to identify the target cable system the proposed method is also able to identify the flexural rigidity. the axial rigidity, and the torsion rigidity of a cable. For a field application, a vibration test on hangers of the Yong Jong Grand Suspension Bridge is carried out and the collected data is used to verify the proposed method.

  • PDF

A Numerical Algorithm for Modeling Microwave Heating Effects in Electrically Large Structures (A 전기적인 대구조의 마이크로파 가열의 수치해석 모델링)

  • Braunstein, Jeffrey;Lee, Ha-Young;Kim, Hyeong-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.2315-2317
    • /
    • 2005
  • In this paper, an iterative method to model the electromagnetic heating of electrically large lossy dielectrics is presented. Frequency domain finite element (FEM) solutions of the wave equation are determined for the lossy inhomogeneous dielectric as the material properties are change with temperature and time. The power absorbed from microwave losses is applied to a finite element time domain (FETD) calculation of the heat diffusion equation. Time steps appropriate for updating the piecewise material properties in the wave equation and the time stepping of the heat equation are presented. The effects of preheating and source frequency are investigated.

  • PDF

Updating of Finite Element Model using Frequency Response Function (주파수 응답함수를 이용한 유한요소모델의 개선)

  • 서상훈;지태한;박영필
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.233-238
    • /
    • 1995
  • 주파수 응답함수를 직접 이용하는 응답함수 방법을 이용하여 8자유도계, 보, 그리고 보구조물의 모의실험과 실험을 통해 다음과 같은 결론을 얻었다. 첫째, 잡음이 혼입된 경우도 데이타를 취하는 주파수 점의 개수를 늘려줌으로써 정확한 결과를 얻는 것이 가능하다. 둘째, 실제 보에 대해서 유한요소모델의 개선을 행하여 실험과 일치하는 결과를 얻을 수 있다. 세째, 볼트로 체결된 보구조물에 대해 유한요소모델의 개선을 통한 결합부의 동정을 통해 실험과 더 잘 일치하는 유한요소모델을 얻을 수 있다.

  • PDF

A Study on the Joint Stiffness of Automotive Structural Model (차체구조 모형의 조인트 해석에 관한 연구)

  • Mun, Yong-Mo;Jee, Tae-Han;Park, Young-Pil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.5
    • /
    • pp.1445-1457
    • /
    • 1996
  • In building a finite element model of as automotive structure, the pillars and rockers are generally modeled as beam elemnts. The finite elemtns modeling using beam is faster and more efficient than that using shell elemetns. A joint is defined as theintersectio region of beam elemts and generally modeled with coupled rotational springs. In this study, hoint modeling technique is presented. First, the definitions of and anlaysis hypothesis for the joint are defined. Second the evaluation method of the joint stiffness from the static test is proposed. This method is simpler than existing evaluaiton methods. Third, the sensitivity analysis method and updating algorithm forjoint stiffness are presented. To verify these melthods, the finite element results of structural models with rigid joints and rotational spring joints are compared with experimental results.

Bridge-vehicle coupled vibration response and static test data based damage identification of highway bridges

  • Zhu, Jinsong;Yi, Qiang
    • Structural Engineering and Mechanics
    • /
    • v.46 no.1
    • /
    • pp.75-90
    • /
    • 2013
  • In order to identify damage of highway bridges rapidly, a method for damage identification using dynamic response of bridge induced by moving vehicle and static test data is proposed. To locate damage of the structure, displacement energy damage index defined from the energy of the displacement response time history is adopted as the indicator. The displacement response time histories of bridge structure are obtained from simulation of vehicle-bridge coupled vibration analysis. The vehicle model is considered as a four-degree-of-freedom system, and the vibration equations of the vehicle model are deduced based on the D'Alembert principle. Finite element method is used to discretize bridge and finite element model is set up. According to the condition of displacement and force compatibility between vehicle and bridge, the vibration equations of the vehicle and bridge models are coupled. A Newmark-${\beta}$ algorithm based professional procedure VBAP is developed in MATLAB, and used to analyze the vehicle-bridge system coupled vibration. After damage is located by employing the displacement energy damage index, the damage extent is estimated through the least-square-method based model updating using static test data. At last, taking one simply supported bridge as an illustrative example, some damage scenarios are identified using the proposed damage identification methodology. The results indicate that the proposed method is efficient for damage localization and damage extent estimation.

Damage detection of shear buildings using frequency-change-ratio and model updating algorithm

  • Liang, Yabin;Feng, Qian;Li, Heng;Jiang, Jian
    • Smart Structures and Systems
    • /
    • v.23 no.2
    • /
    • pp.107-122
    • /
    • 2019
  • As one of the most important parameters in structural health monitoring, structural frequency has many advantages, such as convenient to be measured, high precision, and insensitive to noise. In addition, frequency-change-ratio based method had been validated to have the ability to identify the damage occurrence and location. However, building a precise enough finite elemental model (FEM) for the test structure is still a huge challenge for this frequency-change-ratio based damage detection technique. In order to overcome this disadvantage and extend the application for frequencies in structural health monitoring area, a novel method was developed in this paper by combining the cross-model cross-mode (CMCM) model updating algorithm with the frequency-change-ratio based method. At first, assuming the physical parameters, including the element mass and stiffness, of the test structure had been known with a certain value, then an initial to-be-updated model with these assumed parameters was constructed according to the typical mass and stiffness distribution characteristic of shear buildings. After that, this to-be-updated model was updated using CMCM algorithm by combining with the measured frequencies of the actual structure when no damage was introduced. Thus, this updated model was regarded as a representation of the FEM model of actual structure, because their modal information were almost the same. Finally, based on this updated model, the frequency-change-ratio based method can be further proceed to realize the damage detection and localization. In order to verify the effectiveness of the developed method, a four-level shear building was numerically simulated and two actual shear structures, including a three-level shear model and an eight-story frame, were experimentally test in laboratory, and all the test results demonstrate that the developed method can identify the structural damage occurrence and location effectively, even only very limited modal frequencies of the test structure were provided.

Output-Only System Identification and Model Updating for Performance Evaluation of Tall Buildings (초고층건물의 성능평가를 위한 응답의존 시스템판별 및 모델향상)

  • Cho, Soon-Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.4
    • /
    • pp.19-33
    • /
    • 2008
  • Dynamic response measurements from natural excitation were carried out for 25- and 42-story buildings to evaluate their inherent properties, such as natural frequencies, mode shapes and damping ratios. Both are reinforced concrete buildings adopting a core wall, or with shear walls as the major lateral force resisting system, but frames are added in the plan or elevation. In particular, shear walls in a 25-story building are converted to frames from the 4th floor level downwards while maintaining a core wall throughout, resulting in a fairly complex structure. Due to this, along with similar stiffness characteristics in the principal directions, significantly coupled and closely spaced modes of motion are expected in this building, making identification rather difficult. By using various state-of-the-art system identification methods, the modal parameters are extracted, and the results are then compared. Three frequency-domain and four time-domain based operational modal identification methods are considered. Overall, all natural frequencies and damping ratios estimated from the different identification methods showed a greater consistency for both buildings, while mode shapes exhibited some degree of discrepancy, varying from method to method. On the other hand, in comparison with analysis results obtained using the initial finite element(FE) models, test results exhibited a significant difference of about doubled frequencies, at least for the three lower modes in both buildings. To improve the correlation between test and analysis, a few manual schemes of FE model updating based on plausible reasons have been applied, and acceptable results are obtained. The advantages and disadvantages of each identification method used are addressed, and some difficulties that might arise from the updating of FE models, including automatic procedures, for such large structures are carefully discussed.