• Title/Summary/Keyword: finite-Element Method

Search Result 13,418, Processing Time 0.037 seconds

Implementation of Markerless Augmented Reality with Deformable Object Simulation (변형물체 시뮬레이션을 활용한 비 마커기반 증강현실 시스템 구현)

  • Sung, Nak-Jun;Choi, Yoo-Joo;Hong, Min
    • Journal of Internet Computing and Services
    • /
    • v.17 no.4
    • /
    • pp.35-42
    • /
    • 2016
  • Recently many researches have been focused on the use of the markerless augmented reality system using face, foot, and hand of user's body to alleviate many disadvantages of the marker based augmented reality system. In addition, most existing augmented reality systems have been utilized rigid objects since they just desire to insert and to basic interaction with virtual object in the augmented reality system. In this paper, unlike restricted marker based augmented reality system with rigid objects that is based in display, we designed and implemented the markerless augmented reality system using deformable objects to apply various fields for interactive situations with a user. Generally, deformable objects can be implemented with mass-spring modeling and the finite element modeling. Mass-spring model can provide a real time simulation and finite element model can achieve more accurate simulation result in physical and mathematical view. In this paper, the proposed markerless augmented reality system utilize the mass-spring model using tetraheadron structure to provide real-time simulation result. To provide plausible simulated interaction result with deformable objects, the proposed method detects and tracks users hand with Kinect SDK and calculates the external force which is applied to the object on hand based on the position change of hand. Based on these force, 4th order Runge-Kutta Integration is applied to compute the next position of the deformable object. In addition, to prevent the generation of excessive external force by hand movement that can provide the natural behavior of deformable object, we set up the threshold value and applied this value when the hand movement is over this threshold. Each experimental test has been repeated 5 times and we analyzed the experimental result based on the computational cost of simulation. We believe that the proposed markerless augmented reality system with deformable objects can overcome the weakness of traditional marker based augmented reality system with rigid object that are not suitable to apply to other various fields including healthcare and education area.

A 3-dimensional finite element analysis of tapered internal connection implant system (Avana SS $III^{(R)}$) on different abutment connections (경사형 내부연결 임플란트 시스템 (SS $III^{(R)}$)에서 지대주 형태에 따른 응력분포의 3차원 유한요소 분석)

  • Lee, Hye-Sung;Kim, Myung-Rae;Park, Ji-Man;Kim, Sun-Jong
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.48 no.3
    • /
    • pp.181-188
    • /
    • 2010
  • Purpose: The purpose of this study was to compare the stress distribution characteristics of four different abutment connections on SS-$III^{(R)}$ fixture under occlusal loading, using 3-dimensional finite element method. Materials and methods: The fixture of SS-$III^{(R)}$ (Osstem, Korea) with 4 mm diameter and 11.5 mm length and 4 types of abutments were analyzed; Solid, Com-Octa, ComOcta Gold, and Octa abutment. The models were placed in the area of first molar in the mandible. The 4 loading conditions were; (1) the vertical loading of 100 N on the central fossa, (2) the vertical loading of 100 N on the buccal cusp, (3) the $30^{\circ}$ inclined loading of 100 N to lingual side on the central fossa, and (4) the $30^{\circ}$ inclined loading of 100 N to the lingual side on the buccal cusp. The 3G.Author program was used, the von-Mises stress was calculated and the stress contours were plotted on each part of the implant systems and the surrounding bone structures. Results: Regardless of abutment types and loading conditions, higher stress concentration was observed at the cortical bone. In cancellous bone, the highest stress was observed at apical portion and the maximum stress occurred at the implant neck. The higher internal stress was observed in the fixtures than in the bone. The lowest stress was observed at loading condition 1 and the stress concentration was also lower than any other loading conditions. Conclusion: Within the limitation of the result of this study, it seems that the abutment connection type does not affect much on the stress distribution of bone structure.

The Verification of Computer Simulation of Nitinol Wire Stent Using Finite Element Analysis (유한요소법을 이용한 나이티놀 와이어 스텐트의 전산모사 실험 데이터 검증)

  • Kim, Jin-Young;Jung, Won-Gyun;Jeon, Dong-Min;Shin, Il-Gyun;Kim, Han-Ki;Shin, Dong-Oh;Kim, Sang-Ho;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.20 no.3
    • /
    • pp.139-144
    • /
    • 2009
  • Recently, the mathematical analysis of stent simulation has been improved, with the help of development of various tool which measure mechanical property and location of stent in artery. The most crucial part of the stent modeling is how to design ideal stent and to evaluate the interaction between stent and artery. While there has been great deal of researches on the evaluation of the expansion, stress distribution, deformation of the stent in terms of the various parameters, few verification through computer simulation has been performed about deformation and stress distribution of the stent. In this study, we have produced the corresponding results between experimental test using Universal Testing Machine and computer simulation for the ideal model of stent. Also, we have analyzed and compared stress distribution of stent in the cases of that with membrane and that without membrane. The results of this study would provide minimum change of plan and good quality for ideal stent replacing damaged artery through the analysis using computer simulation in the early stage of stent design.

  • PDF

Development of Evaluation Method for Jointed Concrete Pavement with FWD and Finite Element Analysis (FWD와 유한요소해석을 이용한 줄눈콘크리트포장 평가법 개발)

  • Yun, Kyong-Ku;Lee, Joo-Hyung;Choi, Seong-Yong
    • International Journal of Highway Engineering
    • /
    • v.1 no.1
    • /
    • pp.107-119
    • /
    • 1999
  • The joints in the jointed concrete pavement provide a control against transverse or longitudinal cracking at slab, which may be caused by temperature or moisture variation during or after hydration. Without control of cracking, random cracks cause more serious distresses and result in structural or functional failure of pavement system. However, joints nay cause distresses due to its inherent weakness in structural integrity. Thus, the evaluation at joint is very important. and the joint-related distresses should be evaluated reasonably for economic rehabilitation. The purpose of this paper was to develop an evaluation system at joints of jointed concrete pavement using finite element analysis program, ILLI-SLAB, and nondestructive testing device. FWD. To develop an evaluation system for JCP, a sensitivity analysis was performed using ILLI-SLAB program with a selected variables which might affect fairly to on the performance of transverse joints. The most significant variables were selected from precise analysis. An evaluation charts were made for jointed concrete pavement by adopting the field FWD data. It was concluded that the variables which most significantly affect to pavement deflections are the modulus of subgrade reaction(K) and the modulus of dowel/concrete interaction(G), and limiting criteria on the performance of joints at JCP are 300pci. 500,000 lb/in. respectively. Using these variables and FWD test, a charts of load transfer ratio versus surface deflection at joints were made in order to evaluate the performance of JCP. Practically, Chungbu highway was evaluated by these evaluation charts and FWD field data for jointed concrete pavement. For Chungbu highway, only one joint showed smaller value than limiting criterion of the modulus of dowel/concrete interaction(G). The rest joints showed larger values than limiting criteria of the modulus of subgrade reaction(K) and the modulus of dowel/concrete interaction(G).

  • PDF

Earth Pressure on the Braced Wall in the Composite Ground Depending on the Depth and the Joint Dips of the Base Rocks under the Soil Strata (복합지반 굴착 시 기반암의 깊이와 절리경사에 따라 흙막이벽체에 작용하는 토압)

  • Bae, Sang Su;Lee, Sang Duk
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.10
    • /
    • pp.41-53
    • /
    • 2016
  • Stability of the braced earth wall in the composite ground, which is composed of the jointed base rocks and the soil strata depends on the earth pressure acting on it. In most cases, the earth pressure is calculated by the empirical method, in which base rocks are considered as a soil strata with the shear strength parameters of base rocks. In this case the effect of the joint dips of the jointed base rocks is ignored. Therefore, the calculated earth pressure is smaller than the actual earth pressure. In this study, the magnitude and the distribution of the earth pressure acting on the braced wall in the composite ground depending on the joint dips of the base rocks and the ratio of soil strata and base rocks were experimentally studied. Two dimensional large-scale model tests were conducted in a large scale test facility (height 3.0 m, length 3.0 m and width 0.5 m) by installing 10 supports in a scale of 1/14.5. The test ground was presumed with the base rock ratio of the composite ground of 65%:35% and 50%:50% and with the joint dips for each base rock layer, $0^{\circ}$, $30^{\circ}$, $45^{\circ}$ and $60^{\circ}$, respectively. And then finite element analyses were performed in the same condition. As results, the earth pressure on the braced wall increased as the base rock layer's joint dips became larger. And earth pressure at the rock layer increased as the rock rate became larger. The largest earth pressure was measured when the base rock rate was 50% (R50) and the rock layer's joint dips was $60^{\circ}$. Based on these results, a formular for the calculation of the earth pressure in the composite ground could be suggested. Distribution of earth pressure was idealized in a quadrangular form, in which the magnitude and the position of peak earth pressure depended on the rock ratio and the joint dips.

Economic Impact of HEMOS-Cloud Services for M&S Support (M&S 지원을 위한 HEMOS-Cloud 서비스의 경제적 효과)

  • Jung, Dae Yong;Seo, Dong Woo;Hwang, Jae Soon;Park, Sung Uk;Kim, Myung Il
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.10 no.10
    • /
    • pp.261-268
    • /
    • 2021
  • Cloud computing is a computing paradigm in which users can utilize computing resources in a pay-as-you-go manner. In a cloud system, resources can be dynamically scaled up and down to the user's on-demand so that the total cost of ownership can be reduced. The Modeling and Simulation (M&S) technology is a renowned simulation-based method to obtain engineering analysis and results through CAE software without actual experimental action. In general, M&S technology is utilized in Finite Element Analysis (FEA), Computational Fluid Dynamics (CFD), Multibody dynamics (MBD), and optimization fields. The work procedure through M&S is divided into pre-processing, analysis, and post-processing steps. The pre/post-processing are GPU-intensive job that consists of 3D modeling jobs via CAE software, whereas analysis is CPU or GPU intensive. Because a general-purpose desktop needs plenty of time to analyze complicated 3D models, CAE software requires a high-end CPU and GPU-based workstation that can work fluently. In other words, for executing M&S, it is absolutely required to utilize high-performance computing resources. To mitigate the cost issue from equipping such tremendous computing resources, we propose HEMOS-Cloud service, an integrated cloud and cluster computing environment. The HEMOS-Cloud service provides CAE software and computing resources to users who want to experience M&S in business sectors or academics. In this paper, the economic ripple effect of HEMOS-Cloud service was analyzed by using industry-related analysis. The estimated results of using the experts-guided coefficients are the production inducement effect of KRW 7.4 billion, the value-added effect of KRW 4.1 billion, and the employment-inducing effect of 50 persons per KRW 1 billion.

Flexible Body Dynamics Analysis of Agricultural Tractor Using 4-Post Road Simulator (4-Post Road Simulator 를 이용한 농용 트랙터의 유연 다물체 동역학 해석)

  • Park, Ji Soo;Lee, Kang Wook;Cho, Chong Youn;Yoon, Ji Won;Shin, Jai Yoon
    • Transactions of the KSME C: Technology and Education
    • /
    • v.3 no.2
    • /
    • pp.83-88
    • /
    • 2015
  • Agricultural tractors are utilized on rough road such as rice paddy field. Therefore, static and dynamic load should be considered when simulating structural analysis with finite element analysis (FEA). But it consumes a lot of time and effort to measure dynamic load because of difficulty and complexity in modeling various field working load conditions and kinematics of machinery. In this paper, to reduce the efforts, 4-post road simulator is developed for agricultural tractor like modeling commercial vehicle. In proving ground test in our facility, I measured acceleration of front/rare axle and strain of body frame to validate input loads. The acceleration is used for defining input loads. And strain is validated with dynamics analysis including mode superposition method. As a result, I was able to calculate 4-post input road profiles, which represent similar proving ground profile with good reliability.

Behavior Characteristics of Underreamed Ground Anchor through Field Test and Numerical Analysis (현장시험 및 수치해석을 통한 확공지압형 앵커의 거동특성)

  • Kim, Gyuiwoong;Ahn, Kwangkuk;Min, Kyongnam;Jung, Chanmuk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.8
    • /
    • pp.37-44
    • /
    • 2013
  • The superiority of bearing ground anchor system has been recognized for the stability and economical efficiency since 1950s in Japan, Europe and etc. The ground anchor introduced in Korea, however, has the structural problem that the tensile strength comes only from the ground frictional force caused by the expansion of the wedge body and it is impossible to evaluate the bearing resistance because the adhering method of the anchor body to hollow wall is not appropriate. In this study, the underreamed ground anchor system was developed so that the bearing pressure of ground anchor can exert as much as possible. And the in-situ tests were performed to evaluate the pullout behavior characteristics and to verify the decreasing effect of the bonded length. The pullout tests were performed with the non-grouted tension condition and grouted tension condition in order to identify the pull-out resistance of each conditions. In addition, it was compared with the results of friction anchor. Finally, the numerical analysis was fulfilled to verify the bearing effect at the bonded part through the detailed modeling by PLAXIS-2D, which is general finite element method analysis program.

A Study on the Structural Design of Permeable Asphalt Pavement (투수성 아스팔트포장 구조설계방법에 관한 연구)

  • Lee, Soo-Hyung;Yoo, In-Kyoon;Kim, Je-Won
    • International Journal of Highway Engineering
    • /
    • v.13 no.3
    • /
    • pp.39-49
    • /
    • 2011
  • The porous pavement system is widely considered very effective in urban street because of its various benefits on safety and environment, but the pavement thickness design system has not been established yet. In porous pavement system. rainwater penetrates to the subgrade through porous pavements layers. Porous pavements are expected to reduce or alleviate the problems caused by impermeable pavement layer such as flood damage due to heavy rain in the city, drainage load, disorder in ecosystem, and heat island. However, its structural design methods in traffic roads has not been made mainly because of not being able to consider adequately the effect of rainwater on subgrade strength. In this study, structural design method of porous pavements is suggested after considering the subgrade weakness due to rainwater and numerical mechanical analysis. It is noted that elastic modulus of subgrade is reduced by 20% as subgrade moisture content is increased by 2% at optimum moisture content in the literature review. As a result of both finite element analysis and strength loss of subgrade by the existing design method, it is necessary to increase subbase thickness about 30cm in porous pavements compared with the existing traffic road pavement system. It is similar to premium thickness of structural design of porous pavements in Japan.

Assessment of Equivalent Heights of Soil for the Lateral Earth Pressure Against Retaining Walls Due to Design Truck Load by 3D Numerical Analysis (3차원 수치해석에 의한 표준트럭하중에 의해 옹벽에 작용하는 수평토압의 등가높이 산정)

  • Seo, Seunghwan;Jin, Hyunsik;Kim, Dongwook;Chung, Moonkyung
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.4
    • /
    • pp.75-85
    • /
    • 2019
  • The lateral load from traffic depends on standard truck's axle loads and locations, loading distance from the inner wall. The method of limit state design has been adopted and used for design of roads in the Republic of Korea since 2015. The concept of equivalent height of soil accounting for traffic loading is often used for design of retaining walls to quantify the traffic loads transmitted to the inner wall faces. Due to the different characteristics of the standard design trucks between Korea and US (AASHTO), the direct use of the guidelines from AASHTO LRFD leads to incorrect estimation of traffic load effects on retaining walls. This paper presents the results of evaluation of equivalent height of soil to reflect the standard truck of the nation, based on the findings from analytical solutions using 3D finite element method. Compare to US, the standard truck loading has a structure where the axle load is concentrated so that the equivalent load height is estimated to be slightly larger than AASHTO for lower retaining wall height. It would be reasonable to present the equivalent load height in Korea more conservatively than AASHTO in terms of securing long term stability of the retaining wall structure.