• Title/Summary/Keyword: finite strip

Search Result 337, Processing Time 0.027 seconds

A Study on the Electromagnetic Properties due to Circuit Patters in the Printed Circuit Hoard using Computer Simulation (컴퓨터 시뮬레이션을 이용한 PCB기판에서의 회로패턴에 따른 전자기적 특성에 관한 연구)

  • 이찬오;이성일;김용주;박광현;이준웅
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.11a
    • /
    • pp.265-269
    • /
    • 1996
  • In this paper, electric field interference was analyzed in the Printed Circuit Board to restrain the elcctromagnetic wave using Boundary Element Method and Finite Element Method. First, charge density distribution was simulated using Boundary Element Method and the characteristic impedance was caculated to restrain the reflex wave, and mutual capacitance was caculated in the multi-strip line PCB. Finally, electric field was simulated in the variable patterns using Finite Element Method. As a result, the optimal structure and characteristics of strip line was obtained and the imformations about the optimal design pattern could be obtained with the analysing the feild distribution.

  • PDF

Analysis of Shell Using the Spline Finite Strip with Drilling DOF (면내 회전을 갖는 SPLINE 유한대판 요소에 의한 쉘의 해석)

  • 최창근;홍현석
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.12 no.2
    • /
    • pp.185-199
    • /
    • 1999
  • 본 연구에서는 새로운 spline 유한대판 요소를 제안하였다. 제안된 정식화는 등매개 개념에 의해 기하학적 형상과 변위장을 가정함에 있어 길이방향은 3차의 B-spline 곡선으로, 횡방향에 대해서는 Lagrange 다항식에 의해 표현된다. 이 논문은 평판과 쉘해석에 있어서의 등매개 spline 유한대판 요소의 개선에 목적을 두고 있다. 이 새로운 요소는 스트립의 내부 절점에서 6개의 자유도를 갖는 합-응력 감절점 쉘 요소로부터 유도하였다. 스트립의 기하학적 형상은 강체 회전에 대한 정의에 위배되지 않고도 두께 방향을 따라 Jacobian이 일정하다는 가정을 따랐으며 고체역학에서 정의되는 면내 회전을 penalty 함수에 의한 구속조건으로 간주하여 면내 회전에 관계된 자유도를 생성하였다. 제안된 요소에 대하여 쉘의 전형적인 문제에 대한 수치예제를 보였으며 이 스트립 요소의 성능을 평가하였다.

  • PDF

Bearing capacity of foundation on rock mass depending on footing shape and interface roughness

  • Alencar, Ana S.;Galindo, Ruben A.;Melentijevic, Svetlana
    • Geomechanics and Engineering
    • /
    • v.18 no.4
    • /
    • pp.391-406
    • /
    • 2019
  • The aim of this paper was to study the influence of the footing shape and the effect of the roughness of the foundation base on the bearing capacity of shallow foundations on rock masses. For this purpose the finite difference method was used to analyze the bearing capacity of various types and states of rock masses under the assumption of Hoek-Brown failure criterion, for both plane strain and axisymmetric model, and considering smooth and rough interface. The results were analyzed based on a sensitivity study of four varying parameters: foundation width, rock material constant (mo), uniaxial compressive strength and geological strength index. Knowing how each parameter influences the bearing capacity depending on the footing shape (circular vs strip footing) and the footing base interface roughness (smooth vs rough), two correlation factors were developed to estimate the percentage increase of the ultimate bearing capacity as a function of the footing shape and the roughness of the footing base interface.

Comparison of Scattering Characteristics between Cylindrical Infinite and Finite Periodic Structure (원통형 무한 배열 구조와 원통형 유한 배열 구조의 전파 특성 비교)

  • Jeong, Yi-Ru;Hong, Ic-Pyo;Lee, Kyung-Won;Kok, Chan-Ho;Kim, Dae-Whan;Yook, Jong-Gwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.2
    • /
    • pp.196-203
    • /
    • 2015
  • In order to apply cylindrical periodic array to phased array antenna or frequency selective surface, efficient electromagnetic analysis is required. Finite periodic array is applied in real situation. But, generally, assumed that periodic structure is arranged infinitely, approximate electromagnetic characteristics can be obtained efficiently. But, difference of characteristics between real structure and approximate structure occurs because finite periodic array is approximated to infinite periodic array. Therefore, comparison and analysis of cylindrical infinite array and finite array are required. In this paper, cylindrical infinite periodic array are analyzed using cylindrical Floquet harmonics. Also, cylindrical finite periodic array is analyzed using method of moments (MoM) with thin wire approximation because periodic structures which are composed of strip with narrow width are analyzed. Transmission characteristics and surface currents of infinite and finite periodic structures are compared.

The Analysis of Bearing Capacity Behavior of Strip Footing on Geogrid-Reinforced Sand over a Soft Clay by Numerical Method (수치해석방법에 의한 연약지반위의 보강띠기초의 지지력거동해석)

  • Kim, Young-Min;Kang, Seong-Gwi
    • Journal of the Korean Geosynthetics Society
    • /
    • v.8 no.3
    • /
    • pp.1-7
    • /
    • 2009
  • Earth reinforcement by using geogrids as reinforcing materials are widely applied to several earth structures. The bearing capacity of geogrid reinforced foundation soils is usually examined on based on the rigid plasticity theory or Limit Equilibrium Method. Method of analysis such Limit Equilibrium Method provide no detail information about failure behaviour or strain which develop in the reinforcement or foundation. In this paper the analysis of failure behaviour of strip footing on geogrid-reinforced sand over a soft caly was investigated by using a numerical method. A series of finite element analyses were performed on a geogrid-reinforced strip footing over a soft clay including number of geogrid layers, length, depth. We effectively investigated the failure behaviour and improvement of bearing capacity on the reinforced foundation soil by using FEM program.

  • PDF

Study on the Automatic Strip Layout Design of Shield Connector (쉴드 커넥터 스트립레이아웃 자동설계에 관한 연구)

  • Lee, Dong-Chun;Yun, Jae-Woong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.2
    • /
    • pp.450-455
    • /
    • 2017
  • A shield connector is an automotive electrical component that is used to connect electrical wiring in a vehicle. This part is made by progressive pressing using a phosphor bronze material with high electrical conductivity. The shape of the product is not complicated, but plastic forming techniques are required, such as deep drawing and bending, as well as shearing techniques such as piercing and notching. The finite element method was used to model the process. The strip layout design stage of the progressive die makes it possible to examine the thickness change, the stability of the forming process, and the spring-back. As a result of this analysis, it is possible to predict the correction values for the tendency of cracks, wrinkles, and incomplete plastic deformation, and to identify possible problems in advance. As a countermeasure against the forming error caused by the drawing process analysis, the drawing shape was modified and applied in the process design. For effective material utilization, a 3D strip layout was designed using an optimized blank shape based on nesting. The results improve the crack stability and spring-back of shield connector products produced through progressive pressing.

Curved finite strip and experimental study of thin stiffened composite cylindrical shells under axial compression

  • Mojtaba Rafiee;Hossein Amoushahi;Mehrdad Hejazi
    • Structural Engineering and Mechanics
    • /
    • v.89 no.2
    • /
    • pp.181-197
    • /
    • 2024
  • A numerical method is presented in this paper, for buckling analysis of thin arbitrary stiffened composite cylindrical shells under axial compression. The stiffeners can be placed inside and outside of the shell. The shell and stiffeners are operated as discrete elements, and their interactions are taking place through the compatibility conditions along their intersecting lines. The governing equations of motion are obtained based on Koiter's theory and solved by utilizing the principle of the minimum potential energy. Then, the buckling load coefficient and the critical buckling load are computed by solving characteristic equations. In this formulation, the elastic and geometric stiffness matrices of a single curved strip of the shell and stiffeners can be located anywhere within the shell element and in any direction are provided. Moreover, five stiffened composite shell specimens are made and tested under axial compression loading. The reliability of the presented method is validated by comparing its numerical results with those of commercial software, experiments, and other published numerical results. In addition, by using the ANSYS code, a 3-D finite element model that takes the exact geometric arrangement and the properties of the stiffeners and the shell into consideration is built. Finally, the effects of Poisson's ratio, shell length-to-radius ratio, shell thickness, cross-sectional area, angle, eccentricity, torsional stiffness, numbers and geometric configuration of stiffeners on the buckling of stiffened composite shells with various end conditions are computed. The results gained can be used as a meaningful benchmark for researchers to validate their analytical and numerical methods.

The Finite Element Analysis of Foundation Layer by Introducing Interface Element (접합요소를 도입한 기초지반의 유한요소해석)

  • 양극영;이대재
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.1
    • /
    • pp.9-20
    • /
    • 2002
  • The purpose of this research is to develop computational procedures for studying nonlinear soil-structure interaction Problems. In orders to study soil-structure interaction behavior, the finite element analysis for the strip footing subjected to both vortical and lateral loads, and foundation layer reinforced with sheet pile are considered, interface elements are used between the footing and the soil to model the interaction behavior The main analyzed results are as follows; 1. For the prediction of settlement and lateral displacement, the result due to interface element was evaluated larger then without interface element. 2. For the determination of ultimate bearing capacity, the value using interface element appeared smaller by 12%, which was safe. 3. The horizontal and vertical displacement of strip footing affected by the presence of interface element.

Seismic bearing capacity of skirted footings using finite element analysis

  • Rajesh P. Shukla;Prabir Kumar Basudhar
    • Geomechanics and Engineering
    • /
    • v.39 no.1
    • /
    • pp.13-26
    • /
    • 2024
  • Studies pertaining to the seismic bearing capacity analysis of skirted footings using the pseudo-static approach for estimation of the earthquake force in association with finite element method have been presented in this paper. An attempt has been made to explain the behaviors of the skirted footings by means of failure patterns obtained for rigid and flexible skirts. The skirts enhance the seismic bearing to some extent with an increase in seismic loading, after which it decreases nonlinearly. The effectiveness of skirts increases initially to some extent with an increase in seismic loading, after which it decreases nonlinearly. Other parameters that inversely affect the effectiveness of skirts are the depth of footing and the internal friction angle of the soil. The detailed finite element analysis regarding the various failure patterns of skirted footings under seismic forces shows the failure mechanism changes from a general shear failure to local shear failure with an increase in seismic force. An opposite trend has been observed with the increase in the angle of internal friction of the soil. The obtained analysis results suggest that a rigid skirted footing behaves similar to a conventional strip footing under seismic and static loadings. The excessive deflection of flexible skirts under combined gravity and seismic loading renders them relatively ineffective than rigid skirts.

Improved Impedance Matching of Dual-Frequency Microstrip Printed-Dipole Antenna with Conductor Back

  • Tangjitjesada, M.;Anantrasirichai, N.;Wakabayashi, T.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1668-1671
    • /
    • 2003
  • A novel dual-frequency microstrip printed-dipole antenna operating at 5 GHz and 10 GHz is presented. This antenna is designed for wireless and mobile communication. The balance step coplanar strip is used to be a transmission line at the center of dipole with matching impedance at 50 ohm. Using the conductor strip align on the other side of antenna and adjust the width of step coplanar strip line to improved input impedance matching. By modification for matching impedance of dual frequency antenna are not affected to the radiation patterns. The Finite Difference Time Domain (FDTD) technique is applying to analyze the basic characteristic properties such as $S_{11}$ , input impedance , VSWR and radiation patterns. And these parameters are discussed. The analyze problem space are $51{\times}197{\times}175$ cells and cell dimension are ${\Delta}x=0.3\;mm$ and ${\Delta}y={\Delta}z=0.15\;mm$.

  • PDF