• 제목/요약/키워드: finite spectral method

검색결과 148건 처리시간 0.025초

태양대기모델 계산법 (CALCULATION METHODS OF SOLAR ATMOSPHERIC MODEL)

  • 김갑성
    • 천문학논총
    • /
    • 제15권spc2호
    • /
    • pp.65-71
    • /
    • 2000
  • We have investigated the numerical methods to calculate model atmosphere for the analysis of spectral lines emitted from the sun and stars. Basic equations used in our calculations are radiative transfer, statistical equilibrium and charge-particle conservations. Transfer equation has been solved to get emitting spectral line profile as an initial value problem using Adams-Bashforth-Moulton method with accuracy as high as 12th order. And we have calculated above non linear differential equations simultaneously as a boundary value problem by finite difference method of 3 points approximation through Feautrier elimination scheme. It is found that all computing programs coded by above numerical methods work successfully for our model atmosphere.

  • PDF

스펙트럼 요소법을 이용한 판 구조물의 램파 전달 해석 (Analysis of Lamb wave propagation on a plate using the spectral element method)

  • 임기룡;김은진;최광규;박현우
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 추계학술대회논문집
    • /
    • pp.71-81
    • /
    • 2008
  • This paper proposes a spectral element which can represent dynamic responses in high frequency domain such as Lamb waves on a thin plate. A two layer beam model under 2-D plane strain condition is introduced to simulate high-frequency dynamic responses induced by piezoelectric layer (PZT layer) bonded on a base plate. In the two layer beam model, a PZT layer is assumed to be rigidly bonded on a base beam. Mindlin-Herrmann and Timoshenko beam theories are employed to represent the first symmetric and anti-symmetric Lamb wave modes on a base plate, respectively. The Bernoulli beam theory and 1-D linear piezoelectricity are used to model the electro-mechanical behavior of a PZT layer. The equations of motions of a two layer beam model are derived through Hamilton's principle. The necessary boundary conditions associated with electro mechanical properties of a PZT layer are formulated in the context of dual functions of a PZT layer as an actuator and a sensor. General spectral shape functions of response field and the associated boundary conditions are formulated through equations of motions converted into frequency domain. A detailed spectrum element formulation for composing the dynamic stiffness matrix of a two layer beam model is presented as well. The validity of the proposed spectral element is demonstrated through comparison results with the conventional 2-D FEM and the previously developed spectral elements.

  • PDF

다방향 불규칙파중의 TLP의 동적응답해석 (주파수영역 해석) (Dynamic Response Analysis of Tension Leg Platforms in Multi-directional Irregular Waves (Frequency Domain Analysis))

  • 구자삼;조효제;이창호
    • 한국해양공학회지
    • /
    • 제8권1호
    • /
    • pp.23-32
    • /
    • 1994
  • A numerical procedure is described for simultaneously predicting the motion and structural responses of tension leg platforms (TLPs) in multi-directional irregular waves. The developed numerical approach is based on a combination of a three dimensional source distribution method, the finite element method for structurally treating the space frame elements and a spectral analysis technique of directional waves. The spectral description for the linear responses of a structure in the frequency domain is sufficient to completely define the responses. This is because both the wave inputs and the responses are stationary Gaussian ran dom process of which the statistical properties in the amplitude domain are well known. The hydrodynamic interactions among TLP members, such as columns and pontoons, are included in the motion and structural analysis. The effect of wave directionality has been pointed out on the first order motion, tether forces and structural responses of a TLP in multi-directional irregular waves.

  • PDF

Spectral SFEM analysis of structures with stochastic parameters under stochastic excitation

  • Galal, O.H.;El-Tahan, W.;El-Tawil, M.A.;Mahmoud, A.A.
    • Structural Engineering and Mechanics
    • /
    • 제28권3호
    • /
    • pp.281-294
    • /
    • 2008
  • In this paper, linear elastic isotropic structures under the effects of both stochastic operators and stochastic excitations are studied. The analysis utilizes the spectral stochastic finite elements (SSFEM) with its two main expansions namely; Neumann and Homogeneous Chaos expansions. The random excitation and the random operator fields are assumed to be second order stochastic processes. The formulations are obtained for the system solution of the two dimensional problems of plane strain and plate bending structures under stochastic loading and relevant rigidity using the previously mentioned expansions. Two finite element programs were developed to incorporate such formulations. Two illustrative examples are introduced: the first is a reinforced concrete culvert with stochastic rigidity subjected to a stochastic load where the culvert is modeled as plane strain problem. The second example is a simply supported square reinforced concrete slab subjected to out of plane loading in which the slab flexural rigidity and the applied load are considered stochastic. In each of the two examples, the first two statistical moments of displacement are evaluated using both expansions. The probability density function of the structure response of each problem is obtained using Homogeneous Chaos expansion.

Circulant Matrix Factorization을 이용한 FIR/IIR Lattice 필터의 설계 (Design of FIR/IIR Lattice Filters using the Circulant Matrix Factorization)

  • 김상태;임용곤
    • 대한전자공학회논문지TC
    • /
    • 제41권1호
    • /
    • pp.35-44
    • /
    • 2004
  • Circulant Matrix Factorization (CMF)는 covariance 행렬의 spectral factorization된 결과를 얻을 수 있다. 우리는 얻어진 결과를 가지고 일반적으로 잘 알려진 방법인 Schur algorithm을 이용하여 finite impulse response (FIR)차 infinite impulse response (IIR) lattice 필터를 설계하는 방법을 제안하였다. CMF는 기존에 많이 사용되는 root finding을 사용하지 않고 covariance Polynomial로부터 minimum phase 특성을 가지는 polynomial을 얻는데 유용한 방법이다. 그리고 Schur algorithm은 toeplitz matrix를 빠르게 Cholesky factorization하기 위한 방법으로 이 방법을 이용하면 FIR/IIR lattice 필터의 계수를 쉽게 찾아낼 수 있다. 본 논문에서는 이러한 방법들을 이용하여 FIR과 IIR lattice 필터의 설계의 계산적인 예제를 제시했으며, 제안된 방법과 다른 기존에 제시되었던 방법 (polynomial root finding과 cepstral deconvolution)들과 성능을 비교 평가하였다.

변분법을 이용한 회전축의 스펙트럴요소 모델링 (Spectral Element Modeling of Rotating Shafts by Using Variational Method)

  • 용석진;이재상;이우식
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2007년도 추계학술대회 논문집
    • /
    • pp.923-926
    • /
    • 2007
  • In this paper, the vibration of a rotating shaft with a thin rigid disk is considered. It is assumed that the shaft has uniform, circular cross-section. Based on the Timoshenko-beam theory, the transverse displacements and slops in two lateral directions, the axial displacement, and the torsional deformation are considered. A spectral element model is developed by using the variation method for the vibration analysis of the rotating shaft with a thin rigid disk, which is modeled by two shaft elements and a thin rigid disk element. The result of vibration analysis by finite element method is compared to the result of this research.

  • PDF

집적 광학용 광대역 격자 필터의 해석 (Analysis of Broad- Band Grating Filter Response in Integrated Optics)

  • 김언균;신상균
    • 대한전자공학회논문지
    • /
    • 제19권6호
    • /
    • pp.55-61
    • /
    • 1982
  • 집적 광학에서 응용되는, 주기가 거의 선형으로 변하는 도파로 격자 필터의 파장에 따른 응답을 격자의 길이가 유한함을 고려하여 수식적으로 구하였다. 이 필터가 광대역 필터로서 설계되는 보편적인 경우에 대해서는 관련된 포물주면 함수를 변수의 위상에 따라 점근 근사를 취함으로써 파장에 따른 응답을 간단한 함수들로써 나타냈다. 또한 구한 결파식들이 기존 근사식들을 특별한 경우로 포함하는 일반적인 식임을 보였다. 마지막으로, 수식적인 해에 의한 결과와 RunRe-Kutta 수치 계산법에 의한 정확한 해를 비교하여 서로 잘 일치함을 확인하였다. An analytic solution for the spectral response of linearly-chirped grating filter is derived, which takes the finite physical length of filter into account. In the usual case of broad-band linearly-chirped grating filter the analytic solution is expressed in terms of elementary functions, by approximating asymptotically the involved parabolic cylinder functions over different ranges of its argument. It is also shown that derived results are general enough to include previously-available approximations as particular cases, and that they agree well with the numerical solutions based upon the Runge-Kutta method.

  • PDF

Bandgap capability of hybrid Kirigami inspired cellular structures

  • Del Broccolo, S.;Ouisse, M.;Foltete, E.;Scarpa, F.
    • Advances in aircraft and spacecraft science
    • /
    • 제6권6호
    • /
    • pp.479-495
    • /
    • 2019
  • Periodic cellular core structures included in sandwich panels possess good stiffness while saving weight and only lately their potential to act as passive vibration filters is increasingly being studied. Classical homogeneous honeycombs show poor vibracoustic performance and only by varying certain geometrical features, a shift and/or variation in bandgap frequency range occurs. This work aims to investigate the vibration filtering properties of the AUXHEX "hybrid" core, which is a cellular structure containing cells of different shapes. Numerical simulations are carried out using two different approaches. The first technique used is the harmonic analysis with commercially available software, and the second one, which has been proved to be computationally more efficient, consists in the Wave Finite Element Method (WFEM), which still makes use of finite elements (FEM) packages, but instead of working with large models, it exploits the periodicity of the structure by analysing only the unit cell, thanks to the Floquet-Bloch theorem. Both techniques allow to produce graphs such as frequency response plots (FRF's) and dispersion curves, which are powerful tools used to identify the spectral bandgap signature of the considered structure. The hybrid cellular core pattern AUXHEX is analysed and results are discussed, focusing the investigation on the possible spectral bandgap signature heritage that a hybrid core experiences from their "parents" homogeneous cell cores.

An improved approach for multiple support response spectral analysis of a long-span high-pier railway bridge

  • Li, Lanping;bu, Yizhi;Jia, Hongyu;Zheng, Shixiong;Zhang, Deyi;Bi, Kaiming
    • Earthquakes and Structures
    • /
    • 제13권2호
    • /
    • pp.193-200
    • /
    • 2017
  • To overcome the difficulty of performing multi-point response spectrum analysis for engineering structures under spatially varying ground motions (SVGM) using the general finite element code such as ANSYS, an approach has been developed by improving the modelling of the input ground motions in the spectral analysis. Based on the stochastic vibration analyses, the cross-power spectral density (c-PSD) matrix is adopted to model the stationary SVGM. The design response spectra are converted into the corresponding PSD model with appropriate coherency functions and apparent wave velocities. Then elements of c-PSD matrix are summarized in the row and the PSD matrix is transformed into the response spectra for a general spectral analysis. A long-span high-pier bridge under multiple support excitations is analyzed using the proposed approach considering the incoherence, wave-passage and site-response effects. The proposed approach is deemed to be an efficient numerical method that can be used for seismic analysis of large engineering structures under SVGM.

추계학적 지진동 모사에서 유한단층 모델의 민감도 분석 (Sensitivity Analysis of Finite Fault Model in Stochastic Ground Motion Simulations)

  • 이상현;이준기
    • 한국지진공학회논문집
    • /
    • 제28권3호
    • /
    • pp.159-164
    • /
    • 2024
  • Recent earthquakes in Korea, like Gyeongju and Pohang, have highlighted the need for accurate seismic hazard assessment. The lack of substantial ground motion data necessitates stochastic simulation methods, traditionally used with a simplistic point-source assumption. However, as earthquake magnitude increases, the influence of finite faults grows, demanding the adoption of finite faults in simulations for accurate ground motion estimates. We analyzed variations in simulated ground motions with and without the finite fault method for earthquakes with magnitude (Mw) ranging from 5.0 to 7.0, comparing pseudo-spectral acceleration. We also studied how slip distribution and hypocenter location affect simulations for a virtual earthquake that mimics the Gyeongju earthquake with Mw 5.4. Our findings reveal that finite fault effects become significant at magnitudes above Mw 5.8, particularly at high frequencies. Notably, near the hypocenter, the virtual earthquake's ground motion significantly changes using a finite fault model, especially with heterogeneous slip distribution. Therefore, applying finite fault models is crucial for simulating ground motions of large earthquakes (Mw ≥ 5.8 magnitude). Moreover, for accurate simulations of actual earthquakes with complex rupture processes having strong localized slips, incorporating finite faults is essential even for more minor earthquakes.