• Title/Summary/Keyword: finite metallic plates

Search Result 23, Processing Time 0.015 seconds

Development of Lightweight DMFC System for Charging Secondary Battery in Military Operational Environment (군 운용환경에서 이차전지 충전을 위한 경량화 DMFC 시스템 개발)

  • LEE, SUWON;GWAK, GEONHUI;RO, JUNGHO;CHO, YOUNGRAE;KIM, DOYOUN;JU, HYUNCHUL
    • Journal of Hydrogen and New Energy
    • /
    • v.28 no.5
    • /
    • pp.481-491
    • /
    • 2017
  • In this study, we developed 300 W lightweight DMFC system for charging secondary battery in small unit military operation. In order to reduce the volumetric shape and weight of the system considering the environment of the individual soldier's, the arranging of system components has been optimized. A metal bipolar plates made of STS-470FC have been implemented to the DMFC stack to meet the weight demand of the system. As a result of the performance test of the stack, the target value was satisfied by outputting 561 W exceeding 24% of the stack output 450 W required to output 300 W required for the entire system. Moreover, 2,655 hours exceeding 1,000 hours also has been satisfied. To ensure good robustness of the metallic bipolar plate based DMFC stack, finite element method based simulations are conducted using a commercial ANSYS Fluent software.

Cyclic testing of a new visco-plastic damper subjected to harmonic and quasi-static loading

  • Modhej, Ahmad;Zahrai, Seyed Mehdi
    • Structural Engineering and Mechanics
    • /
    • v.81 no.3
    • /
    • pp.317-333
    • /
    • 2022
  • Visco-Plastic Damper (VPD) as a passive energy dissipation device with dual behavior has been recently numerically studied. It consists of two bent steel plates and segments with a viscoelastic solid material in between, combining and improving characteristics of both displacement-dependent and velocity-dependent devices. In order to trust the performance of VPD, for the 1st time this paper experimentally investigates prototype damper behavior under a wide range of frequency and amplitude of dynamic loading. A high-axial damping rubber is innovatively proposed as the viscoelastic layer designed to withstand large axial strains and dissipate energy accordingly. Test results confirmed all assumptions about VPD. The behavior of VPD subjected to low levels of excitation is elastic while with increasing levels of excitation, a significant source of energy dissipation is provided through the yielding of the steel elements in addition to the viscoelastic energy dissipation. The results showed energy dissipation of 99.35 kN.m under a dynamic displacement with 14.095 mm amplitude and 0.333 Hz frequency. Lateral displacement at the middle of the device was created with an amplification factor obtained ranging from 2.108 to 3.242 in the rubber block. Therefore, the energy dissipation of viscoelastic material of VPD was calculated 18.6 times that of the ordinary viscoelastic damper.

Experimental and numerical study of a steel plate-based damper for improving the behavior of concentrically braced frames

  • Denise-Penelope N. Kontoni;Ali Ghamari;Chanachai Thongchom
    • Steel and Composite Structures
    • /
    • v.47 no.2
    • /
    • pp.185-201
    • /
    • 2023
  • Despite the high lateral stiffness and strength of the Concentrically Braced Frame (CBF), due to the buckling of its diagonal members, it is not a suitable system in high seismic regions. Among the offered methods to overcome the shortcoming, utilizing a metallic damper is considered as an appropriate idea to enhance the behavior of Concentrically Braced Frames (CBFs). Therefore, in this paper, an innovative steel damper is proposed, which is investigated experimentally and numerically. Moreover, a parametrical study was carried out to evaluate the effect of the mechanism (shear, shear-flexural, and flexural) considering buckling mode (elastic, inelastic, and plastic) on the behavior of the damper. Besides, the necessary formulas based on the parametrical study were presented to predict the behavior of the damper that they showed good agreement with finite element (FE) results. Both experimental and numerical results confirmed that dampers with the shear mechanism in all buckling modes have a better performance than other dampers. Accordingly, the FE results indicated that the shear damper has greater ultimate strength than the flexural damper by 32%, 31%, and 56%, respectively, for plates with elastic, inelastic, and plastic buckling modes. Also, the shear damper has a greater stiffness than the flexural damper by 43%, 26%, and 53%, respectively, for dampers with elastic, inelastic, and plastic buckling modes.