• 제목/요약/키워드: finite load traffic

검색결과 74건 처리시간 0.022초

Congestion effect on maximum dynamic stresses of bridges

  • Samanipour, Kianoosh;Vafai, Hassan
    • Structural Engineering and Mechanics
    • /
    • 제55권1호
    • /
    • pp.111-135
    • /
    • 2015
  • Bridge behavior under passing traffic loads has been studied for the past 50 years. This paper presents how to model congestion on bridges and how the maximum dynamic stress of bridges change during the passing of moving vehicles. Most current research is based on mid-span dynamic effects due to traffic load and most bridge codes define a factor called the dynamic load allowance (DLA), which is applied to the maximum static moment under static loading. This paper presents an algorithm to solve the governing equation of the bridge as well as the equations of motions of two real European trucks with different speeds, simultaneously. It will be shown, considering congestion in eight case studies, the maximum dynamic stress and how far from the mid-span it occurs during the passing of one or two trucks with different speeds. The congestion effect on the maximum dynamic stress of bridges can make a significant difference in the magnitude. By finite difference method, it will be shown that where vehicle speeds are considerably higher, for example in the case of railway bridges which have more than one railway line or in the case of multiple lane highway bridges where congestion is probable, current designing codes may predict dynamic stresses lower than actual stresses; therefore, the consequences of a full length analysis must be used to design safe bridges.

도로기초에서 교통 및 환경하중에 의한 비선형 현장 응력 거동 평가 (Evaluation of Traffic Load and Moisture-Induced Nonlinear In-Situ Stress on Pavement Foundation Layers)

  • 박성완;황규영;안동석;정문경;서영국
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 춘계 학술발표회
    • /
    • pp.11-16
    • /
    • 2009
  • Better understanding of in-situ mechanical behavior of pavement foundations is very important to predict long-term effects on the system performance of transport infrastructure. In order to do that, resilient stiffness characterization of geomaterals is needed to properly adopt such mechanistic analysis under both traffic and environmental loadings. In this paper, in situ monitoring data from KHC test road was used to analyze the non-linearity of stress conditions under traffic and moisture loadings. Then, the predicted non-linear response using finite element method with a selected constitutive model of foundation geomaterials are verified with the field data.

  • PDF

교통하중하의 지하 매설관의 거동 평가 (Performance Evaluation of Buried Concrete Pipe under Heavy Traffic Load)

  • 반호기;박성완;김용락
    • 한국지반공학회논문집
    • /
    • 제29권12호
    • /
    • pp.69-75
    • /
    • 2013
  • 지하 매설관은 우리의 일상생활과 매우 밀접하지만 일반적으로 붕괴로 인한 피해가 발생하기 전에는 그 중요성에 둔감한 편이다. 대부분의 매설관은 도로포장체 아래에 매설되어 있어 외부하중으로는 주로 교통하중을 받는다. 본 연구에서는 이러한 교통하중을 받는 지하 매설관의 거동에 대해 살펴보았다. 지하 매설관의 거동에 영향을 미치는 인자는 여러 가지가 있지만, 본 연구에서는 매설 깊이(H)와 매설관의 직경(D)의 비를 가장 중요한 인자로 보고 연구를 수행하였다. 두 가지 경우의 매설 깊이에 대한 매설관 직경 비에 따른 매설관의 건전성을 살펴보았다. 결과를 바탕으로 매설관의 건전성을 확보할 수 있는 매설깊이를 결정할 수 있었으며, 보다 경계적인 매설관 설계를 할 수 있을 것으로 기대된다.

Field testing and numerical modeling of a low-fill box culvert under a flexible pavement subjected to traffic loading

  • Acharya, Raju;Han, Jie;Parsons, Robert L.;Brennan, James J.
    • Geomechanics and Engineering
    • /
    • 제11권5호
    • /
    • pp.625-638
    • /
    • 2016
  • This paper presents field study and numerical modeling results for a single-cell low-fill concrete box culvert under a flexible pavement subjected to traffic loading. The culvert in the field test was instrumented with displacement transducers to capture the deformations resulting from different combinations of static and traffic loads. A low-boy truck with a known axle configuration and loads was used to apply seven static load combinations and traffic loads at different speeds. Deflections under the culvert roof were measured during loading. Soil and pavement samples were obtained by drilling operation on the test site. The properties of the soil and pavement layers were determined in the laboratory. A 3-D numerical model of the culvert was developed using a finite difference program FLAC3D. Linear elastic models were used for the pavement layers and soil. The numerical results with the material properties determined in the laboratory were compared with the field test results. The observed deflections in the field test were generally smaller under moving loads than static loads. The maximum deflections measured during the static and traffic loads were 0.6 mm and 0.41 mm respectively. The deflections computed by the numerical method were in good agreement with those observed in the field test. The deflection profiles obtained from the field test and the numerical simulation suggest that the traffic load acted more like a concentrated load distributed over a limited area on the culvert. Elastic models for culverts, pavement layers, and surrounding soil are appropriate for numerical modeling of box culverts under loading for load rating purposes.

다단계 FWD 하중을 이용한 블록포장의 비선형 거동 분석 (An Analysis on the Nonlinear Behavior of Block Pavements using Multi-Load Level Falling Weight Deflectometer Testing)

  • 박희문;김연태;이수형
    • 한국도로학회논문집
    • /
    • 제18권6호
    • /
    • pp.35-40
    • /
    • 2016
  • OBJECTIVES : The objective of this study is to analyze the nonlinear behavior of block pavements using multi-load level falling weight deflectometer (FWD) deflections. METHODS : Recently, block pavements are employed not only in sidewalks, but also in roadways. For the application of block pavements in roadways, the structural capacities of subbase and subgrade are important factors that support the carry traffic load. Multi-load level FWD testing was conducted on block pavements to analyze their nonlinear behavior. The deflection ratio due to the increase in load was analyzed to estimate the nonlinearity of block pavements. Finite element method with nonlinear soil model was applied to simulate the actual nonlinear behavior of the block pavement under different levels of load. RESULTS : The results of the FWD testing show that the center deflections in block pavements are approximately ten times greater than that in asphalt pavements. The deflection ratios of the block pavement due to the increase in the load range from 1.2 to 1.5, indicating that the deflection increased by 20~50%. The material coefficients of the nonlinear soil model were determined by comparing the measured deflections with the predicted deflections using the finite element method. CONCLUSIONS : In this study, the nonlinear behavior of block pavements was reviewed using multi-load level FWD testing. The deflection ratio proposed in this study can estimate the nonlinearity of block pavements. The use of nonlinear soil model in subbase and subgrade increases the accuracy of predicting deflections in finite element method.

Assessment of load carrying capacity and fatigue life expectancy of a monumental Masonry Arch Bridge by field load testing: a case study of veresk

  • Ataei, Shervan;Tajalli, Mosab;Miri, Amin
    • Structural Engineering and Mechanics
    • /
    • 제59권4호
    • /
    • pp.703-718
    • /
    • 2016
  • Masonry arch bridges present a large segment of Iranian railway bridge stock. The ever increasing trend in traffic requires constant health monitoring of such structures to determine their load carrying capacity and life expectancy. In this respect, the performance of one of the oldest masonry arch bridges of Iranian railway network is assessed through field tests. Having a total of 11 sensors mounted on the bridge, dynamic tests are carried out on the bridge to study the response of bridge to test train, which is consist of two 6-axle locomotives and two 4-axle freight wagons. Finite element model of the bridge is developed and calibrated by comparing experimental and analytical mid-span deflection, and verified by comparing experimental and analytical natural frequencies. Analytical model is then used to assess the possibility of increasing the allowable axle load of the bridge to 25 tons. Fatigue life expectancy of the bridge is also assessed in permissible limit state. Results of F.E. model suggest an adequacy factor of 3.57 for an axle load of 25 tons. Remaining fatigue life of Veresk is also calculated and shown that a 0.2% decrease will be experienced, if the axle load is increased from 20 tons to 25 tons.

재료 특성이 철근 콘크리트 슬래브의 동적 거동에 미치는 영향 (Effects of Material Characteristics on the Dynamic Response of the Reinforced Concrete Slabs)

  • 오경윤;조진구;홍종현
    • 한국농공학회논문집
    • /
    • 제49권4호
    • /
    • pp.43-49
    • /
    • 2007
  • The reinforced concrete slab is one of main structure members in the construction industry sector. However, most of researches regarding to RC slabs have been focused on two-dimensional Mindlin-type plate element on the basis of laminated plate theory since three-dimensional solid element has a lot of difficulties in finite element formulation and costs in CPU time. In reality, the RC slabs are subjected to dynamic loads like a heavy traffic vehicle load, and thus should insure the safety from the static load as well as dynamic load. Once we can estimate the dynamic behaviour of RC slabs exactly, it will be very helpful for design of it. In this study, the 20-node solid element has been used to analyze the dynamic characteristics of RC slabs with clamped edges. The elasto-visco plastic model for material non-linearity and the smeared crack model have been adopted in the finite element formulation. The applicability of the proposed finite element has been tested for dynamic behaviour of RC slabs with respect to characteristics of concrete materials in terms of cracking stress, crushing strain, fracture energy and Poisson's ratio. The effect on dynamic behaviour is dependent on not crushing strain but cracking stress, fracture energy and Poisson's ratio. In addition to this, it is shown the damping phenomenon of RC slabs has been identified from the numerical results by using Rayleigh damping.

표준트럭하중에 의해 옹벽에 작용하는 수평토압의 등가높이 산정 (Assessment of Equivalent Heights of Soil for the Lateral Earth Pressure Against Retaining Walls Due to Design Truck Load)

  • 김두환;진현식;서승환;박재현;김동욱;정문경
    • 한국지반신소재학회논문집
    • /
    • 제17권4호
    • /
    • pp.119-128
    • /
    • 2018
  • 교통하중으로 인해 교통시설 하부구조인 옹벽에 전달되는 수평토압은 도로의 차선 수, 차량하중 및 옹벽으로부터 이격거리 등에 영향을 받는다. 차량하중에 의해 유발되는 토압은 등가상재하중높이로 표현하며, 표준트럭의 축하중 크기와 위치에 따라 달라진다. 한계상태설계법은 2015년부터 국내 도로교 설계에 적용되어 왔으나, 우리나라 실정을 고려한 토압하중계수(등가상재하중높이)가 제시되어 있지 않아 설계에 적용하는데 어려움이 있다. 따라서, 본 연구에서는 국내 표준트럭의 축하중 크기 및 위치를 반영한 등가상재하중높이를 산정하였다. 탄성체 지반에 대하여 Boussinesq 이론을 적용시켜 계산한 등가상재하중높이와 2차원 수치해석 산정치를 비교하였다. 그리고 수치해석 상의 한계와 옹벽의 장기안정성을 고려하여 AASHTO 기준치와 차별화된 등가상재하중높이를 제안하였다. 우리나라 교통하중으로부터 도출된 등가상재하중높이는 AASHTO에서 제안하는 등가상재하중높이보다 옹벽의 높이가 낮을 경우 다소 낮게 평가되었으며 옹벽의 높이가 높을 경우 높게 평가되었다.

Bearing capacity of an eccentric tubular concrete-filled steel bridge pier

  • Sui, Weining;Cheng, Haobo;Wang, Zhanfei
    • Steel and Composite Structures
    • /
    • 제27권3호
    • /
    • pp.285-295
    • /
    • 2018
  • In this paper, the bearing capacity of a non-eccentric and eccentric tubular, concrete-filled, steel bridge pier was studied through the finite element method. Firstly, to verify the validity of the numerical analysis, the finite element analysis of four steel tube columns with concrete in-fill was carried out under eccentric loading and horizontal cyclic loading. The analytical results were compared with experimental data. Secondly, the effects of the eccentricity of the vertical loading on the seismic performance of these eccentrically loaded steel tubular bridge piers were considered. According to the simulated results, with increasing eccentricity ratio, the bearing capacity on the eccentric side of a steel tubular bridge pier (with concrete in-fill) is greatly reduced, while the capacity on the opposite side is improved. Moreover, an empirical formula was proposed to describe the bearing capacity of such bridge piers under non-eccentric and eccentric load. This will provide theoretical evidence for the seismic design of the eccentrically loaded steel tubular bridge piers with concrete in-fill.

접착식 콘크리트 덧씌우기 포장의 부착거동 연구 (A Study on the Bond-Behavior of Bonded Concrete Overlays)

  • 김영규;이승우;한승환
    • 한국도로학회논문집
    • /
    • 제14권5호
    • /
    • pp.31-45
    • /
    • 2012
  • PURPOSES: In Korea, rapid maintenance of distressed concrete pavement is required to prevent traffic jam of the highway. Asphalt concrete overlay has been used as a general maintenance method of construction for aged concrete pavement. AC overlay on existing concrete pavements experience various early distresses such as reflection crack, pothole and rutting, due to different physical characteristics between asphalt overlay and existing concrete pavement. Bonded concrete overlay(BCO) is a good alternative since it has advantages that can reduce various distresses during the service life since overlay material has similar properties with existing concrete pavements. Recently, BCO which uses the ultra rapid harding cement has been applied for maintenance of highway. BCO has advantage of structural performance since it does monolithic behave with existing pavement. Therefore, it is important to have a suitable bond strength criteria for securing performance of BCO. Bond strength criteria should be larger than normal tensile stress and horizontal shear stress occurred by traffic and environmental loading at bond interface. Normal tensile stress and horizontal shear stress need to estimated for the establishment of practical bond strength criteria. METHODS: This study aimed to estimate the bond stresses at the interface of BCO using the three dimensional finite element analysis. RESULTS: As a result of this study, major failure mode and maximum bond stress are evaluated through the analysis of normal tensile stress and horizontal shear stress for various traffic and environmental load conditions. CONCLUSIONS: It was known that normal tensile stresses are dominated by environmental loading, and, horizontal shear stresses are dominated by traffic loading. In addition, bond failure occurred by both of normal tensile stresses and horizontal shear stresses; however, normal tensile stresses are predominated over horizontal shear stresses.