• Title/Summary/Keyword: finite group

Search Result 811, Processing Time 0.027 seconds

Analysis of Optimum Design of Stepped Bar Horn for 20kHz Metal Ultrasonic Welding (20kHz 급 금속 초음파 융착용 스텝형 바 혼의 최적설계)

  • Kim, Jisun;Kim, Jaewoong;Kim, In-ju;Seo, Joowhan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.94-101
    • /
    • 2019
  • In this study, the FEM technique was applied to design the shape of the horn that transmits ultrasonic vibration energy to the base material, and the shape of the welding horn with a one-wavelength bar shape used in the 20kHz region was designed. The shape design of the horn was performed by applying the rod longitudinal vibration theory to Ansys APDL (Ansys Parametric Design Language). Twenty-five models were designed using the ratio of the area of the input and output surfaces of the vibration and the length of the horn to derive the appropriate horn shape. The horn was designed with a total length of 130mm, a step length of 65mm, and an output area of 28.79mm. The horn was fabricated using the optimized dimensions, and the vibration and displacement characteristics of the horn were evaluated using the measurement system. Finally, a uniform longitudinal step horn was designed, and more than 97.4% of the uniformity of the tip was secured. The amplitude ratio of the optimized horn was improved by 51%.

Fatigue Capacity Evaluation of Hinge Type Connection System for a Hybrid Truss Bridge (복합 트러스교 힌지형 격점 구조의 피로 성능 평가)

  • Jung, Kwang-Hoe;Yi, Jong-Won;Lee, Sang-Hyu;Kim, Jay Jang-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.3
    • /
    • pp.303-310
    • /
    • 2011
  • To replace a steel box bridge for constructions of medium span bridges in Korea, the Hybrid Truss Bridge (HTB) is being considered as an alternative bridge type. The core technology of HTB is the connection joint that links the concrete slabs and steel truss pipes. Various construction companies in Japan have developed unique connection systems and applied to the real bridge constructions after verifying their performances through the experimental evaluation. In this study, the fatigue test of a hybrid truss girder has been performed in order to verify the newly proposed hinge type connection joint`s static and fatigue capacities. Through this fatigue test results, it is founded that the structural detail to improve the fatigue capacity should be developed. The hinge connection system with circular ribs has been proposed by means of structural finite element analyses. And then the fatigue test for this connection joint has been performed and it is proved that this connection joint has enough fatigue capacity. Finally, it is expected that the hinge connection system with circular ribs developed by in this study can be easily applied to the real bridge.

THE FRACTURE RESISTANCE AND STRESS DISTRIBUTION OF ALL CERAMIC CROWNS WITH TWO TYPES OF FINISH LINE ON MAXILLARY CENTRAL INCISOR (상악중절치에서 전부도재관의 finish line형태에 따른 파절강도와 응력 분포에 관한 연구)

  • Ki Tae-Seok;Kim Kyea-Soon;Lee Jin-Han;Kim Yu-Lee;Dong Jin-Keun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.41 no.4
    • /
    • pp.405-420
    • /
    • 2003
  • Purpose : The purpose of this study was to compare the fracture resistance of the IPS Empress ceramic crown with 1.0mm width rounded shoulder, which is usually recommended in all ceramic crown. and 0.5mm width chamfer finish lines on the maxillary central incisor. Material and method : After 15 metal dies were made for each group, the IPS Empress all ceramic crowns were fabricated and cemented with resin cement(Bistite resin cement, Tokuyama Soda Co. LTD., Japan) on the metal die. The cemented crowns were mounted on the positioning jig and the universal testing machine(Zwick Z020, Zwick Co. Germany)was used to measure the fracture strength with loading on the incisal edge. And also, three-dimensional finite element stress analysis was used to measure the stress distribution with the various types of the finish lines(1.0mm width rounded shoulder, 0.5mm width chamfer), the loading site(incisal edge, incisal $\frac{1}{3}$) and the type of loading(concentration loading, distribution loading). Results and conclusion : 1. In the fracture resistance experiment according to the finish line, the mean fracture strength of rounded shoulder(876N) and the mean fracture strength of chamfer(882N) did not skew any significant difference between each other(p>0.05). 2. The stress distribution of all ceramic crown in three dimensional finite element analysis showed concentration aspect at loading point and cervical area or labial surface. 3. In metal die, there were no differences in stress distribution between finish lines, but in natural teeth model, chamfer finish line showed higher stress than rounded shoulder finish line. 4. When force was loaded on the incisal edge the stress was concentrated on the incisal edge and the cervical area of labial surface. When force was loaded on the incisal $\frac{1}{3}$, the stress concentrated on the cervical area of labial surface and the cingulum area. 5. Generally, natural teeth model showed higher and various stress than the metal die.

Stress Analysis on the Splinted Conditions of the Two Implant Crowns with the Different Vertical Bone Level (치조골 높이가 다른 2개 임플란트 금관의 고정연결 조건에 따른 응력분석)

  • Jeon, Chang-Sik;Jeong, Sin-Young;Kang, Dong-Wan
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.21 no.2
    • /
    • pp.169-182
    • /
    • 2005
  • The purpose of this study was to compare the stress distribution around the surrounding bone according to the splinted and non-splinted conditions on the finite element models of the two implant crowns with the different vertical bone level. The finite element model was designed with the parallel placement of the two fixtures ($4.0mm{\times}11.5mm$) with reverse buttress thread on the mandibular 1st and 2nd molars. As the bone quality, the inner cancellous bone and the outer 2 mm cortical bone were designed, and the cortical and cancellous bone were assumed to be perfectly bonded to the implant fixture. The splinted model(Model 1) had 2 mm contact surface and the non-splinted model(Model 2) had $8{\mu}m$ gap between two implant crowns. Two group (Splinted and non-splinted) was loaded with 200 N magnitude in the vertical and oblique directions on the loading point position on the central position of the crown, the 2 mm and 4 mm buccal offset point from the central position. Von Mises stress value was recorded and compared in the fixture-bone interface in the bucco-lingual and mesio-distal sections. The results were as follows; 1. In the vertical loading condition of central position, the stress was distributed on the cortical bone and the cancellous bone around the thread of the fixture in the splinted and non-splinted models. In the oblique loading condition, the stress was concentrated toward the cortical bone of the fixture neck, and the neck portion of 2nd molar in the non-splinted model was concentrated higher than that of 1st molar compared to the splinted model. 2. In the 2 mm buccal offset position of the vertical loading compared to the central vertical loading, stress pattern was shifted from apical third portion of the fixture to upper third portion of that. In the oblique loading condition, the stress was distributed over the fixture-bone interface. 3. In the 4 mm buccal offset position of the vertical loading, stress pattern was concentrated on the cortical bone around the buccal side of the fixture thread and shifted from apical third portion of the fixture to upper third portion of that in the splinted and non-splinted models. In the oblique loading, stresses pattern was distributed to the outer position of the neck portion of the fixture thread on the mesio-distal section in the splinted and non-splinted models. Above the results, it was concluded that the direction of loading condition was a key factor to effect the pattern and magnitude of stress over the surrounding bone of the fixture under the vertical and oblique loading conditions, although the type with or without proximal contact did not effect to the stress distribution.

Bearing Capacity of Shallow Foundation on a Finite Layer of Sandy Ground Underlain by a Rigid Base (강성저면위 유한한 두께의 모래지반에 놓인 얕은기초의 지지력)

  • Jun, Sang-Hyun;Yoo, Nam-Jae;Yoo, Kun-Sun
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.6
    • /
    • pp.39-48
    • /
    • 2011
  • In this paper the method of estimating the bearing capacity of shallow foundation on a finite layer of sandy ground underlain by a rigid base was proposed by assessing results of the model test and the numerical analyses. For model experiments, the centrifuge tests under 1g and 20 g of gravitational levels were performed with sandy soils sampled from the field, changing the relative density of sandy soil and the ratio of thickness of sand layer (H) to the width of strip footing (B). As results of tests, bearing capacity tends to increase with the value of H/B while settlement for a given load intensity decreases. Bearing capacity also increases with relative density of the soil. In order to propose the method of estimating the bearing capacity of thin sandy layer underlain by a rigid base, values of bearing capacity factors from test results were compared with the values of modified bearing capacity factor by Mandel & Salencon (1972) considering the effect of H/B value on bearing capacity. The relation of bearing capacity factor ratio, normalizing friction angle of sandy soil, with the value of H/B was suggested so that this relation could be applied to design in the safe side. The results of numerical analyses obrained by changing the layout of footing, relative density of sandy soil and the value of H/B, were in good agreements with the suggested relation.

AC transport current loss analysis for a face-to-face stack of superconducting tapes

  • Yoo, Jaeun;Youm, Dojun;Oh, SangSoo
    • Progress in Superconductivity and Cryogenics
    • /
    • v.15 no.2
    • /
    • pp.34-38
    • /
    • 2013
  • AC Losses for face to face stacks of four identical coated conductors (CCs) were numerically calculated using the H-formulation combined with the E-J power law and the Kim model. The motive sample was the face to face stack of four 2 mm-wide CC tapes with 2 ${\mu}m$ thick superconducting layer of which the critical current density, $J_c$, was $2.16{\times}10^6A/cm^2$ on IBAD-MgO template, which was suggested for the mitigation of ac loss as a round shaped wire by Korea Electrotechnology Research Institute. For the calculation the cross section of the stack was simply modeled as vertically aligned 4 rectangles of superconducting (SC) layers with $E=E_o(J(x,y,t)/J_c(B))^n$ in x-y plane where $E_o$ was $10^{-6}$ V/cm, $J_c$(B) was the field dependence of current density and n was 21. The field dependence of the critical current of the sample measured in four-probe method was employed for $J_c$(B) in the equation. The model was implemented in the finite element method program by commercial software. The ac loss properties for the stacks were compared with those of single 4 cm-wide SC layers with the same critical current density or the same critical current. The constraint for the simulation was imposed in two different ways that the total current of the stack obtained by integrating J(x,y,t) over the cross sections was the same as that of the applied transport current: one is that one fourth of the external current was enforced to flow through each SC. In this case, the ac loss values for the stacks were lower than those of single wide SC layer. This mitigation of the loss is attributed to the reduction of the normal component of the magnetic field near the SC layers due to the strong expulsion of the magnetic field by the enforced transport current. On the contrary, for the other case of no such enforcement, the ac loss values were greater than those of single 4cm-wide SC layer and. In this case, the phase difference of the current flowing through the inner and the outer SC layers of the stack was observed as the transport current was increased, which was a cause of the abrupt increase of ac loss for higher transport current.

Failure Mode and Failure Strength of Homogeneous Metals & Dissimilar Metals Bonded Single Lap-Shear Joints (동종금속 및 이종금속 단일 겹침 접착 시편의 파손모드 및 파손강도에 관한 연구)

  • Park, Beom Chul;Chun, Heoung-Jae;Park, Jong Chan
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.1
    • /
    • pp.1-5
    • /
    • 2019
  • In this paper, the experimental study and finite elements analysis were conducted on homogeneous and dissimilar metals single lap-shear bonded joints to investigate the factor that affect the joint failure load. It was found that factors which have the significant effects on the failure load of the joint was stiffness of the adherends. And from experimental results, it can be confirmed that the failure load increases linearly with overlap length increases. And the failure load of dissimilar metal joints is approximately 1KN(10~17%) larger than homogeneous metal joints. In order to confirm this phenomenon, the stress distribution and strain distribution of the specimens were analyzed through the finite element analysis. The difference between homogeneous metals joints and dissimilar metals joints is that stress and strain in adhesive are concentrated at the end of the overlap zone close to aluminium which has lower rigidity than aluminium in case of dissimilar metals joints. From high rigidity of steel, the stress concentration in bonds are decreased and it cause increase of the failure strength at dissimilar metal joints.

The Most Efficient Extension Field For XTR (XTR을 가장 효율적으로 구성하는 확장체)

  • 한동국;장상운;윤기순;장남수;박영호;김창한
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.12 no.6
    • /
    • pp.17-28
    • /
    • 2002
  • XTR is a new method to represent elements of a subgroup of a multiplicative group of a finite field GF( $p^{6m}$) and it can be generalized to the field GF( $p^{6m}$)$^{[6,9]}$ This paper progress optimal extention fields for XTR among Galois fields GF ( $p^{6m}$) which can be aplied to XTR. In order to select such fields, we introduce a new notion of Generalized Opitimal Extention Fields(GOEFs) and suggest a condition of prime p, a defining polynomial of GF( $p^{2m}$) and a fast method of multiplication in GF( $p^{2m}$) to achieve fast finite field arithmetic in GF( $p^{2m}$). From our implementation results, GF( $p^{36}$ )longrightarrowGF( $p^{12}$ ) is the most efficient extension fields for XTR and computing Tr( $g^{n}$ ) given Tr(g) in GF( $p^{12}$ ) is on average more than twice faster than that of the XTR system on Pentium III/700MHz which has 32-bit architecture.$^{[6,10]/ [6,10]/6,10]}$

Characterizing Multichannel Conduit Signal Properties Using a Ground Penetrating Radar: An FDTD Analysis Approach (FDTD 수치해석을 이용한 다중 관로에 대한 GPR 탐지 신호 특성 분석)

  • Ryu, Hee-Hwan;Bae, Joo-Yeol;Song, Ki-Il;Lee, Sang-Yun
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.12
    • /
    • pp.75-91
    • /
    • 2023
  • In this study, we explore the use of ground penetrating radar (GPR) for the nondestructive survey of subsurface conduits, focusing on the challenges posed by multichannel environments. A key concern is the shadow regions created by conduits, which significantly impact survey results. The shadow regions, which are influenced by conduit position and diameter, hinder signal propagation, thereby making detection within these regions challenging. Using finite-difference time-domain numerical analysis, we examined the characteristics of conduit signals, which typically manifest in hyperbolic patterns. Particularly, we investigated three conduit arrangements: horizontal, vertical, and diagonal. Automatic gain control was applied to amplify the signals, enabling the analysis of variations in shadow regions and signal characteristics for each arrangement. In the horizontal arrangement, the proximity of the two conduits resulted in the emergence of a new hyperbolic pattern between the existing conduits. In the vertical arrangement, the lower conduit could be detected using hyperbolic signals on either side, but the detection was challenging when the upper conduit diameter exceeded that of the lower conduit. In the diagonal arrangement, signal characteristics varied based on the position of shadow regions relative to the detection range of the equipment. Asymmetrical signal patterns were observed when the shadow regions fell within the detection range, whereas the signals of the two conduits were minimally impacted when the shadow regions were outside the detection range. This study provides vital insights into accurately detecting and characterizing subsurface multichannel conduits using GPR-a significant contribution to the field of subsurface exploration and management.

A FEM study on stress distribution of tooth-supported and implant-supported overdentures retained by telescopic crowns (텔레스코픽 크라운 임플란트 지지 피개의치와 치아 지지 피개의치의 하악골내 응력분포에 관한 유한요소분석)

  • Paek, Jang-Hyun;Lee, Chang-Gyu;Kim, Tae-Hun;Kim, Min-Jung;Kim, Hyeong-Seob;Kwon, Kung-Rock;Woo, Yi-Hyung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.50 no.1
    • /
    • pp.10-20
    • /
    • 2012
  • Purpose: The purpose of this study was to investigate the stress distribution in mandibular implant-supported overdentures and tooth-supported overdentures with telescopic crowns. Materials and methods: The assumption of this study was that there were 2, 3, 4 natural teeth and implants which are located in the second premolar and canine regions in various distributed conditions. The mandible, teeth (or implants and abutments), and connectors are modeled, and analyzed with the commercial software, ANSYS Version 10.1. Stress distribution was evaluated under 150 N vertical load bilaterally on 3 experimental conditions - between canine areas, canine and $2^{nd}$ premolars, 10 mm posterior to $2^{nd}$ premolars. Results: Overall, the case of the implant group showed more stress than the case of the teeth group in stress distribution to bone. In stress distribution to superstructures of tooth and implants, there was no significant difference between TH group and IM group and the highest stress appeared in TH-IV and IM-IV. The stress caused from bar was much higher than those of implant and tooth. TH group showed less stress than IM group in stress distribution to abutment teeth and implant. Conclusion: The results shows that it is crucial to make sure that distance between impact loading point and abutment tooth does not get too far apart, and if it does, it is at best to set abutment tooth on premolar tooth region. It will be necessary to conduct more experiments on effects on implants, natural teeth and bone, in order to apply these results to a clinical treatment.