• Title/Summary/Keyword: finite group

Search Result 71, Processing Time 0.056 seconds

A Novel Key Sharing Fuzzy Vault Scheme

  • You, Lin;Wang, Yuna;Chen, Yulei;Deng, Qi;Zhang, Huanhuan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.9
    • /
    • pp.4585-4602
    • /
    • 2016
  • A novel key sharing fuzzy vault scheme is proposed based on the classic fuzzy vault and the Diffie-Hellman key exchange protocol. In this proposed scheme, two users cooperatively build their fuzzy vault for their shared key using their own biometrics. Either of the users can use their own biometrics to unlock the fuzzy vault with the help of the other to get their shared key without risk of disclosure of their biometrics. Thus, they can unlock the fuzzy vault cooperatively. The security of our scheme is based on the security of the classic fuzzy vault scheme, one-way hash function and the discrete logarithm problem in a given finite group.

GALOIS CORRESPONDENCES FOR SUBFACTORS RELATED TO NORMAL SUBGROUPS

  • Lee, Jung-Rye
    • Communications of the Korean Mathematical Society
    • /
    • v.17 no.2
    • /
    • pp.253-260
    • /
    • 2002
  • For an outer action $\alpha$ of a finite group G on a factor M, it was proved that H is a, normal subgroup of G if and only if there exists a finite group F and an outer action $\beta$ of F on the crossed product algebra M $\times$$_{\alpha}$ G = (M $\times$$_{\alpha}$ F. We generalize this to infinite group actions. For an outer action $\alpha$ of a discrete group, we obtain a Galois correspondence for crossed product algebras related to normal subgroups. When $\alpha$ satisfies a certain condition, we also obtain a Galois correspondence for fixed point algebras. Furthermore, for a minimal action $\alpha$ of a compact group G and a closed normal subgroup H, we prove $M^{G}$ = ( $M^{H}$)$^{{beta}(G/H)}$for a minimal action $\beta$ of G/H on $M^{H}$.f G/H on $M^{H}$.TEX> H/.

EXTENSIONS OF DRINFELD MODULES OF RANK 2 BY THE CARLITZ MODULE

  • Woo, Sung-Sik
    • Bulletin of the Korean Mathematical Society
    • /
    • v.32 no.2
    • /
    • pp.251-257
    • /
    • 1995
  • In the catagory of t-modules the Carlitz module C plays the role of $G_m$ in the category of group schemes. For a finite t-module G which corresponds to a finite group scheme, Taguchi [T] showed that Hom (G, C) is the "right" dual in the category of finite- t-modules which corresponds to the Cartier dual of a finite group scheme. In this paper we show that for Drinfeld modules (i.e., t-modules of dimension 1) of rank 2 there is a natural way of defining its dual by using the extension of drinfeld module by the Carlitz module which is in the same vein as defining the dual of an abelian varietiey by its $G_m$-extensions. Our results suggest that the extensions are the right objects to define the dual of arbitrary t-modules.t-modules.

  • PDF

FINITE GROUP ACTIONS ON THE 3-DIMENSIONAL NILMANIFOLD

  • Goo, Daehwan;Shin, Joonkook
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.18 no.2
    • /
    • pp.223-232
    • /
    • 2005
  • We study only free actions of finite groups G on the 3-dimensional nilmanifold, up to topological conjugacy which yields an infra-nilmanifold of type 2.

  • PDF

THE STRUCTURE OF THE RADICAL OF THE NON SEMISIMPLE GROUP RINGS

  • Yoo, Won Sok
    • Korean Journal of Mathematics
    • /
    • v.18 no.1
    • /
    • pp.97-103
    • /
    • 2010
  • It is well known that the group ring K[G] has the nontrivial Jacobson radical if K is a field of characteristic p and G is a finite group of which order is divided by a prime p. This paper is concerned with the structure of the Jacobson radical of such a group ring.