• Title/Summary/Keyword: finite fault model

Search Result 93, Processing Time 0.024 seconds

Earthquake Wave Propagation Using Staggered-grid Finite-difference Method in the Model of the Antarctic Region (엇격자 유한차분법을 이용한 극지해역 지진파 모델링)

  • Oh, Ju-Won;Min, Dong-Joo;Lee, Ho-Yong;Park, Min-Kyu
    • Journal of the Korean earth science society
    • /
    • v.32 no.6
    • /
    • pp.640-653
    • /
    • 2011
  • We simulate the propagation of earthquake waves in the continental margin of Antarctica using the elastic wave modeling algorithm, which is modified to be suitable for acoustic-elastic coupled media and earthquake source. To simulate the various types of earthquake source, the staggered-grid finite-difference method, which is composed of velocity-stress formulae, can be more appropriate to use than the conventional, displacement-based, finite-difference method. We simulate the elastic wave propagation generated by earthquakes combining 3D staggered-grid finite-difference algorithm composed of displacement-velocity-stress formulae with double couple mechanisms for earthquake source. Through numerical tests for left-lateral strike-slip fault, normal fault and reverse fault, we could confirm that the first arrival of P waves at the surface is in a good agreement with the theoretically-predicted results based on the focal mechanism of an earthquake. Numerical results for a model made after the subduction zone in the continental margin of Antarctica showed that earthquake waves, generated by the reverse fault and propagating through the continental crust, the oceanic crust and the ocean, are accurately described.

Research on the Influence of Inter-turn Short Circuit Fault on the Temperature Field of Permanent Magnet Synchronous Motor

  • Qiu, Hongbo;Yu, Wenfei;Tang, Bingxia;Yang, Cunxiang;Zhao, Haiyang
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.1566-1574
    • /
    • 2017
  • When the inter-turn short circuit (ITSC) fault occurs, the distortion of the magnetic field is serious. The motor loss variations of each part are obvious, and the motor temperature field is also affected. In order to obtain the influence of the ITSC fault on the motor temperature distribution, firstly, the normal and the fault finite element models of the permanent magnet synchronous motor (PMSM) were established. The magnetic density distribution and the eddy current density distribution were analyzed, and the mechanism of loss change was revealed. The effects of different forms and degrees of the fault on the loss were obtained. Based on the loss analysis, the motor temperature field calculation model was established, and the motor temperature change considering the loop current was analyzed. The influence of the fault on the motor temperature distribution was revealed. The sensitivity factors that limit the motor continuous operation were obtained. Finally, the correctness of the simulation was verified by experiments. The conclusions obtained are of great significance for the fault and high temperature demagnetization of the permanent magnet analysis.

Revisiting the OSL Ages of Marine Terrace Sediments at Suryum Fault Site, Gyeongju, South Korea: Single Grain OSL Dating (수렴단층노두 해안단구 퇴적층의 OSL 연대에 대한 재고찰: 단일입자 OSL 연대측정 연구)

  • Heo, Seoyoung;Choi, Jeong-Heon;Hong, Duk-Geun
    • The Journal of the Petrological Society of Korea
    • /
    • v.23 no.3
    • /
    • pp.187-195
    • /
    • 2014
  • In this paper, we report new OSL ages of the marine terrace sediments at Suryum fault site, using single grains of quartz, and briefly discuss their chronological implications on the timing of terrace formation along the southeastern coast of Korea. Of 1200 grains measured, 93 quartz grains were found to have OSL properties suitable for dating, the equivalent dose ($D_e$) values of which varied significantly, ranging from 50 Gy to 610 Gy with the overdispersion of $30{\pm}4%$. Applied to the Central Age Model (CAM) and Minimum Age Model (MAM), these quartz grains showed the OSL ages of $83{\pm}4ka$ and $60^{+3}{_{-7}}ka$, respectively, both of which are stratigraphically inconsistent with the previously reported OSL ages of lower $2^{nd}$ terrace (MIS 5a; ~80 ka). However, Finite Mixture Model (FMM) revealed that a small fraction of the measured quartz grains ($6{\pm}4%$) were of the ages ($194{\pm}24ka$) corresponding to MIS 7. Conclusively, based on single grain OSL ages, it would be prudent not to exclude the possibility that the marine terrace sediments at Suryum fault site have formed during MIS 7. Further, our single grain OSL ages imply that multiple grain(single aliquot) OSL dating methods are not applicable to the marine sediments at Suryum fault site.

Investigation of the behavior of a tunnel subjected to strike-slip fault rupture with experimental approach

  • Zhen Cui;Tianqiang Wang;Qian Sheng;Guangxin Zhou
    • Geomechanics and Engineering
    • /
    • v.33 no.5
    • /
    • pp.477-486
    • /
    • 2023
  • In the studies on fault dislocation of tunnel, existing literatures are mainly focused on the problems caused by normal and reverse faults, but few on strike-slip faults. The paper aims to research the deformation and failure mechanism of a tunnel under strike-slip faulting based on a model test and test-calibrated numerical simulation. A potential faulting hazard condition is considered for a real water tunnel in central Yunnan, China. Based on the faulting hazard to tunnel, laboratory model tests were conducted with a test apparatus that specially designed for strike-slip faults. Then, to verify the results obtained from the model test, a finite element model was built. By comparison, the numerical results agree with tested ones well. The results indicated that most of the shear deformation and damage would appear within fault fracture zone. The tunnel exhibited a horizontal S-shaped deformation profile under strike-slip faulting. The side walls of the tunnel mainly experience tension and compression strain state, while the roof and floor of the tunnel would be in a shear state. Circular cracks on tunnel near fault fracture zone were more significant owing to shear effects of strike-slip faulting, while the longitudinal cracks occurred at the hanging wall.

Prediction of Fault Zone ahead of Tunnel Face Using Longitudinal Displacement Measured on Tunnel Face (터널 굴진면 수평변위를 이용한 굴진면 전방의 단층대 예측)

  • Song, Gyu-Jin;Yun, Hyun-Seok;Seo, Yong-Seok
    • The Journal of Engineering Geology
    • /
    • v.26 no.2
    • /
    • pp.187-196
    • /
    • 2016
  • We conducted three-dimensional finite element analysis to predict the presence of upcoming fault zones during tunneling. The analysis considered longitudinal displacements measured at tunnel face, and used 28 numerical models with various fault attitudes. The x-MR (moving range) control chart was used to analyze quantitatively the effects of faults distributed ahead of the tunnel face, given the occurrence of a longitudinal displacement. The numerical models with fault were classified as fault gouge, fault breccia, and fault damage zones. The width of fault cores was set to 1 m (fault gouge 0.5 m and fault breccia 0.5 m) and the width of fault damage zones was set to 2 m. The results, suggest that fault centers could be predicted at 2~26 m ahead of the tunnel face and that faults could be predicted earliest in the 45° dip model. In addition, faults could be predicted earliest when the angle between the direction of tunnel advance and the strike of the fault was smallest.

The Study for Performance Analysis of Software Reliability Model using Fault Detection Rate based on Logarithmic and Exponential Type (로그 및 지수형 결함 발생률에 따른 소프트웨어 신뢰성 모형에 관한 신뢰도 성능분석 연구)

  • Kim, Hee-Cheul;Shin, Hyun-Cheul
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.9 no.3
    • /
    • pp.306-311
    • /
    • 2016
  • Software reliability in the software development process is an important issue. Infinite failure NHPP software reliability models presented in the literature exhibit either constant, monotonic increasing or monotonic decreasing failure occurrence rates per fault. In this paper, reliability software cost model considering logarithmic and exponential fault detection rate based on observations from the process of software product testing was studied. Adding new fault probability using the Goel-Okumoto model that is widely used in the field of reliability problems presented. When correcting or modifying the software, finite failure non-homogeneous Poisson process model. For analysis of software reliability model considering the time-dependent fault detection rate, the parameters estimation using maximum likelihood estimation of inter-failure time data was made. The logarithmic and exponential fault detection model is also efficient in terms of reliability because it (the coefficient of determination is 80% or more) in the field of the conventional model can be used as an alternative could be confirmed. From this paper, the software developers have to consider life distribution by prior knowledge of the software to identify failure modes which can be able to help.

Electromagnetic Behavior of High-Tc Superconducting Fault Current Limiters under the Quench State (켄치 상태에서 고온 초전도 한류기의 전자기적 거동)

  • Hyo-Sang Choi
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.1
    • /
    • pp.38-42
    • /
    • 2004
  • In this paper we analyzed the electromagnetic behavior of a superconducting fault current limiter (SFCL) under the quench state using FEM. The analysis model used in this work is 5.5 KVA meander-line type SFCLs which are currently developed by Superconductor Power System Lab in Korea Electric Power Research Institute. Meshes of 3,650 triangular elements were used in the analysis of this SFCL. Analysis results showed that the distribution of current density was concentrated to inner curved line in meander-line type SFCL and the maximum current density was 14.61 A/$m^2$ and also the maximum Joule heat was 2,030 W/$m^2$ in this region. We think that the new and the modified structure must be considered for an uniform distribution of the electromagnetic field.

An Approach for the NHPP Software Reliability Model Using Erlang Distribution (어랑 분포를 이용한 NHPP 소프트웨어 신뢰성장 모형에 관한 연구)

  • Kim Hee-Cheul;Choi Yue-Soon;Park Jong-Goo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.1
    • /
    • pp.7-14
    • /
    • 2006
  • The finite failure NHPP models proposed in the literature exhibit either constant, monotonic increasing or monotonic decreasing failure occurrence rates per fault. In this paper, we propose the Erlang reliability model, which can capture the increasing nature of the failure occurrence rate per fault. Equations to estimate the parameters of the Erlang finite failure NHPP model based on failure data collected in the form of inter-failure times are developed. For the sake of proposing shape parameter of the Erlang distribution, we used to the goodness-of-fit test of distribution. Data set, where the underlying failure process could not be adequately described by the existing models, which motivated the development of the Erlang model. Analysis of the failure data set which led us to the Erlang model, using arithmetic and Laplace trend tests, goodness-of-fit test, bias tests is presented.

Slip Movement Simulations of Major Faults Under Very Low Strength

  • Park, Moo-Choon;Han, Uk
    • Economic and Environmental Geology
    • /
    • v.33 no.1
    • /
    • pp.61-75
    • /
    • 2000
  • Through modeling fault network using thin plate finite element technique in the San Andreas Fault system with slip rate over 1mm/year, as well as elevation, heat flow, earthquakes, geodetic data and crustal thickness, we compare the results with velocity boundary conditions of plate based on the NUVEL-1 plate model and the approximation of deformation in the Great Basin region. The frictional and dislocation creep constants of the crust are calculated to reproduce the observed variations in the maximum depth of seismicity which corresponds to the temperature ranging from $350^{\circ}C$ to $410^{\circ}C$. The rheologic constants are defined by the coefficient of friction on faults, and the apparent activation energy for creep in the lower crust. Two parameters above represent systematic variations in three experiments. The pattern of model indicates that the friction coefficient of major faults is 0.17~0.25. we test whether the weakness of faults is uniform or proportional to net slip. The geologic data show a good agreement when fault weakness is a trend of an additional 30% slip dependent weakening of the San Andreas. The results of study suggest that all weakening is slip dependent. The best models can be explained by the available data with RMS mismatch of as little as 3mm/year, so their predictions can be closely related with seismic hazard estimation, at least along faults where no data are available.

  • PDF

Dynamic response of post-tensioned rocking wall-moment frames under near-fault ground excitation

  • Feng, Ruoyu;Chen, Ying;Cui, Guozhi
    • Earthquakes and Structures
    • /
    • v.15 no.3
    • /
    • pp.243-251
    • /
    • 2018
  • The dynamic responses of a rocking wall-moment frame (RWMF) with a post-tensioned cable are investigated. The nonlinear equations of motions are developed, which can be categorized as a single-degree-of-freedom (SDOF) model. The model is validated through comparison of the rocking response of the rigid rocking wall (RRW) and displacement of the moment frame (MF) against that obtained from Finite Element analysis when subjected ground motion excitation. A comprehensive parametric analysis is carried out to determine the seismic performance factors of the RWMF systems under near-fault trigonometric pulse excitation. The horizontal displacement of the RWMF system is compared with that of MF structures without RRW, revealing the damping effect of the RRW. Frame displacement spectra excited by trigonometric pulses and recorded earthquake ground motions are constructed. The effects of pulse type, mass ratio, frame stiffness, and wall slenderness variations on the displacement spectra are presented. The paper shows that the coupling with a RRW has mixed results on suppressing the maximum displacement response of the frame.