• Title/Summary/Keyword: finite element numerical simulations

Search Result 435, Processing Time 0.022 seconds

Evaluation of Crashworthiness and NVH Performances of Side Structure with Finite Element Analysis considering Stamping Effects (성형효과를 고려한 해석을 통한 차체 측면구조의 충돌 및 진동 성능평가)

  • Kim, Se-Ho;Kim, Kee-Poong;Choi, Won-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.5
    • /
    • pp.119-127
    • /
    • 2008
  • In this paper, the influence of the stamping effect is investigated in the performance analysis of a side structure. The analysis covers the performance evaluation such as the crashworthiness and NVH. Stamping analyses are carried out for the center pillar and the side sill made of high strength steels. Then, numerical simulations are carried out in order to identify the stamping effect on the crashworthiness, the natural frequency and the normal mode. The result shows that the analysis of the side structure considering the forming history leads to a different result from that without considering the forming effect. The variation of the system response fully reveals effects of thinning and hardening of members on the performance prediction of vehicle parts. The analysis results demonstrate that the design of auto-body members should be carried out considering the stamping history for accurate assessment of various performances.

Design and Production of Hybrid Type Center Plate for Molten Carbonate Fuel Cell (용융탄산염 연료전지용 하이브리드 타입 센터 플레이트의 설계 및 제작)

  • Lee, C.H.;Ryu, S.M.;Yang, D.Y.;Kang, D.W.;Chang, I.G.;Lee, T.W.
    • Transactions of Materials Processing
    • /
    • v.20 no.4
    • /
    • pp.273-278
    • /
    • 2011
  • Employing the TRIZ problem solving technique, a hybrid-type center plate for the molten carbonate fuel cell(MCFC) was developed for the purpose of improving gas sealing and maintenance. The manufacturing method of the hybrid-type center plate was divided into a trimming operation and a two-step bending process. In the latter, a modified punch shape was used to reduce springback. Using finite element(FE) simulations, bending stresses in the thickness and the in-plane directions were computed and the bending conditions were optimized. The optimized results of the two-step bending process were used as a basis for the design of the trimming process of the hybrid-type center plate. Finally, the external manifold-type center plate and the hybrid-type center plate were fabricated using a die set that accounts for the optimized conditions. It was found that the numerical simulation results were in good agreement with the experiments.

FEA and Experiment Investigation on the Friction Reduction for Ultrasonic Vibration Assisted Deep Drawing (초음파 진동 딥 드로잉 공정에서의 마찰감소효과 분석을 위한 유한요소해석 및 실험)

  • Kim, S.W.;Son, Y.G.;Lee, Y.S.
    • Transactions of Materials Processing
    • /
    • v.23 no.7
    • /
    • pp.413-418
    • /
    • 2014
  • The current study presents experimental and numerical results on the effect of ultrasonic vibrations on a cylindrical cup drawing of a cold rolled steel sheet(SPCC). An experimental apparatus, which can superimpose high frequency oscillations during deep drawing, was constructed by installing on the tooling ultrasonic vibration generators consisting of a piezoelectric transducer and a resonator. Conventional and vibration-assisted cylindrical deep drawing tests were conducted for various drawing ratios, and the limiting drawing ratios(LDR) for both methods were compared. To evaluate quantitatively the contribution from the ultrasonic vibrations to the reduction of friction between tools and material finite element analyses were conducted. Through a series of parametric analyses, the friction coefficients, which minimized the differences of punch load data between the experiments and simulations, were determined. The results show that the application of ultrasonic vibration effectively improves the LDR by reducing the friction between the tools and the material.

Prediction of Mechanical Behavior for Carbon Black Added Natural Rubber Using Hyperelastic Constitutive Model

  • Kim, Beomkeun
    • Elastomers and Composites
    • /
    • v.51 no.4
    • /
    • pp.308-316
    • /
    • 2016
  • The rubber materials are widely used in automobile industry due to their capability of a large amount of elastic deformation under a force. Current trend of design process requires prediction of functional properties of parts at early stage. The behavior of rubber material can be modeled using strain energy density function. In this study, five different strain energy density functions - Neo-Hookean model, Reduced Polynomial $2^{nd}$ model, Ogden $3^{rd}$ model, Arruda Boyce model and Van der Waals model - were used to estimate the behavior of carbon black added natural rubber under uniaxial load. Two kinds of tests - uniaxial tension test and biaxial tension test - were performed and used to correlate the coefficients of the strain energy density function. Numerical simulations were carried out using finite element analysis and compared with experimental results. Simulation revealed that Ogden $3^{rd}$ model predicted the behavior of carbon added natural rubber under uniaxial load regardless of experimental data selection for coefficient correlation. However, Reduced Polynomial $2^{nd}$, Ogden $3^{rd}$, and Van der Waals with uniaxial tension test and biaxial tension test data selected for coefficient correlation showed close estimation of behavior of biaxial tension test. Reduced Polynomial $2^{nd}$ model predicted the behavior of biaxial tension test most closely.

Crash analysis of military aircraft on nuclear containment

  • Sadique, M.R.;Iqbal, M.A.;Bhargava, P.
    • Structural Engineering and Mechanics
    • /
    • v.53 no.1
    • /
    • pp.73-87
    • /
    • 2015
  • In case of aircraft impact on nuclear containment structures, the initial kinetic energy of the aircraft is transferred and absorbed by the outer containment, may causing either complete or partial failure of containment structure. In the present study safety analysis of BWR Mark III type containment has been performed. The total height of containment is 67 m. It has a circular wall with monolithic dome of 21m diameter. Crash analysis has been performed for fighter jet Phantom F4. A normal hit at the crown of containment dome has been considered. Numerical simulations have been carried out using finite element code ABAQUS/Explicit. Concrete Damage Plasticity model have been incorporated to simulate the behaviour of concrete at high strain rate, while Johnson-Cook elasto-visco model of ductile metals have been used for steel reinforcement. Maximum deformation in the containment building has reported as 33.35 mm against crash of Phantom F4. Deformations in concrete and reinforcements have been localised to the impact region. Moreover, no significant global damage has been observed in structure. It may be concluded from the present study that at higher velocity of aircraft perforation of the structure may happen.

Crack identification based on Kriging surrogate model

  • Gao, Hai-Yang;Guo, Xing-Lin;Hu, Xiao-Fei
    • Structural Engineering and Mechanics
    • /
    • v.41 no.1
    • /
    • pp.25-41
    • /
    • 2012
  • Kriging surrogate model provides explicit functions to represent the relationships between the inputs and outputs of a linear or nonlinear system, which is a desirable advantage for response estimation and parameter identification in structural design and model updating problem. However, little research has been carried out in applying Kriging model to crack identification. In this work, a scheme for crack identification based on a Kriging surrogate model is proposed. A modified rectangular grid (MRG) is introduced to move some sample points lying on the boundary into the internal design region, which will provide more useful information for the construction of Kriging model. The initial Kriging model is then constructed by samples of varying crack parameters (locations and sizes) and their corresponding modal frequencies. For identifying crack parameters, a robust stochastic particle swarm optimization (SPSO) algorithm is used to find the global optimal solution beyond the constructed Kriging model. To improve the accuracy of surrogate model, the finite element (FE) analysis soft ANSYS is employed to deal with the re-meshing problem during surrogate model updating. Specially, a simple method for crack number identification is proposed by finding the maximum probability factor. Finally, numerical simulations and experimental research are performed to assess the effectiveness and noise immunity of this proposed scheme.

Two-Dimensional Sub-diffraction-limited Imaging by an Optimized Multilayer Superlens

  • Ahmadi, Marzieh;Forooraghi, Keyvan;Faraji-Dana, Reza;Ghaffari-Miab, Mohsen
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.6
    • /
    • pp.653-662
    • /
    • 2016
  • An optimized multilayer superlens is designed, using a rigorous and efficient approach based on the method of moments (MoM) in conjunction with a simulated annealing (SA) algorithm. For the MoM solution, fast evaluation of closed-form Green's functions (GFs) in the spatial domain is performed by applying the complex-image (CI) technique, which obviates the time-consuming numerical evaluation of Sommerfeld integrals. The imaging capability of the superlens is examined with the correlation coefficient; results show that using circular polarization for the incident wave can improve this coefficient. To validate the proposed method, finite-element-based simulations are exploited, which reveal the method's accuracy and computational efficiency. Simulation results indicate that the designed structure is capable of producing two-dimensional sub-diffraction-limited images in the visible range, which may make it more versatile for practical applications. Finally, as a considerable finding, it is demonstrated for the proposed design that using circularly polarized illumination provides improved super-resolving performance, compared to linearly polarized illumination.

A two-stage approach for quantitative damage imaging in metallic plates using Lamb waves

  • Ng, Ching-Tai
    • Earthquakes and Structures
    • /
    • v.8 no.4
    • /
    • pp.821-841
    • /
    • 2015
  • This paper proposes a two-stage imaging approach for quantitative inspection of damages in metallic plates using the fundamental anti-symmetric mode of ($A_0$) Lamb wave. The proposed approach employs a number of transducers to transmit and receive $A_0$ Lamb wave pulses, and hence, to sequentially scan the plate structures before and after the presence of damage. The approach is applied to image the corrosion damages, which are simplified as a reduction of plate thickness in this study. In stage-one of the proposed approach a damage location image is reconstructed by analyzing the cross-correlation of the wavelet coefficient calculated from the excitation pulse and scattered wave signals for each transducer pairs to determine the damage location. In stage-two the Lamb wave diffraction tomography is then used to reconstruct a thickness reduction image for evaluating the size and depth of the damage. Finite element simulations are carried out to provide a comprehensive verification of the proposed imaging approach. A number of numerical case studies considering a circular transducer network with eight transducers are used to identify the damages with different locations, sizes and thicknesses. The results show that the proposed methodology is able to accurately identify the damage locations with inaccuracy of the order of few millimeters of a circular inspection area of $100mm^2$ and provide a reasonable estimation of the size and depth of the damages.

A Study on Dynamic Characteristics of a Catenary System (가선계의 동특성에 관한 연구)

  • 김정수;최병두
    • Journal of KSNVE
    • /
    • v.9 no.2
    • /
    • pp.317-323
    • /
    • 1999
  • Dynamic characteristics of catenary that supplies electrical power to high-speed trains are investigated. A simple catenary is composed of the contact and messenger wires connected by droppers possessing bi-directional stiffness properties. For slender, repeating structures such as catenary, both the wave propagation and vibration properties need to be understood. The influence of parameters that determine catenary dynamics are investiaged through numerical simulations involving finite element models. The effects of the tension and flexural rigidity of the contact wire is first investigated. The effects of dropper characteristics are then investigated. For linear droppers wave propagation as well as modal properties are determined. For large catenary motion, droppers can be modeled as bi-directional elements possessing low stiffness in compression and high stiffness in tension. For this case, impulse response is computed and compared with the cases of linear droppers. It is found that the catenary dynamics are primarily determined by contact wire tension and dropper properties, with large responses observed in 5∼40 Hz frequency range. In particular, the dropper stiffness and spacing are found to have dominant influence on the response frequency and the wave transmission characteristics.

  • PDF

Design of Front Lower Control Arm Considering Buckling Strength and Durability Strength

  • Lee, Dong-Chan;Kim, Young-Il
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.13 no.2
    • /
    • pp.77-84
    • /
    • 2010
  • Recently, the concept of structural design against instability has been proposed in the chassis parts. The design considerations of lower control arm of chassis parts under the buckling and durability strengths are the general. More precisely, this paper considers a specific application and associated optimization problem for two strengths, where the design variables are the physical or geometric dimensions for skins and stiffeners. The objective is the minimization of the total weight, while optimization constrains involve reserve or improve factors for the buckling and durability strengths. The most important features are related to the numerical simulations for the estimation of buckling factor and their sensitivities by means of nonlinear and linear finite element analyses. The bucking and durability strength analyses, and the morping geometries are directly included in the optimization problem and the modified design is formulated. As a result, the optimal structure with stable behavior is obtained or increases the buckling and durability strengths of parts. Most of design problems for structures exposed to elastic instability can be formulated and solved.

  • PDF