• Title/Summary/Keyword: finite element methods (FEM)

Search Result 415, Processing Time 0.021 seconds

Slope Failure Surface Using Finite Element Method

  • Ahn, Tae-Bong
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.3
    • /
    • pp.27-40
    • /
    • 1999
  • In limit equilibrium methods(LEM), all methods employ the same definition of the safety factor as a ratio of the shear strength of the soil to the shear stress required for equilibrium, employing certain assumptions with regard to equilibrium. In addition, in the conventional finite element method of analysis, the minimum safety factor is obtained assuming certain slip surfaces after the state of stress are found. Although the stress states are obtained from the finite element method(FEM), the slope stability analysis follows the conventional method that assumes a potential slip surface. In this study, a slope stability analysis based on FEM is developed to locate the slip surface by tracking the weakest points in the slope based on the local safety factor considering the magnitude and direction of the shear stresses. It has also been applied to be compared with the slip surfaces predicted by LEM. A computer program has been developed to draw contour lines of the local safety factors automatically. This method is illustrated through a simple hypothetical slope, a natural soil slope, and a dam slope. The developed method matches very well with the conventional LEM methods, with slightly lower global safety factors.

  • PDF

FEM-BEM iterative coupling procedures to analyze interacting wave propagation models: fluid-fluid, solid-solid and fluid-solid analyses

  • Soares, Delfim Jr.
    • Coupled systems mechanics
    • /
    • v.1 no.1
    • /
    • pp.19-37
    • /
    • 2012
  • In this work, the iterative coupling of finite element and boundary element methods for the investigation of coupled fluid-fluid, solid-solid and fluid-solid wave propagation models is reviewed. In order to perform the coupling of the two numerical methods, a successive renewal of the variables on the common interface between the two sub-domains is performed through an iterative procedure until convergence is achieved. In the case of local nonlinearities within the finite element sub-domain, it is straightforward to perform the iterative coupling together with the iterations needed to solve the nonlinear system. In particular, a more efficient and stable performance of the coupling procedure is achieved by a special formulation that allows to use different time steps in each sub-domain. Optimized relaxation parameters are also considered in the analyses, in order to speed up and/or to ensure the convergence of the iterative process.

A Numerical Calculation of Open Boundary Problem by Applying FEM and BEM Alternately (유한요소법과 경계요소법의 교호적용에 의한 무한영역해석)

  • Im, Jae-Won
    • Proceedings of the KIEE Conference
    • /
    • 1999.07a
    • /
    • pp.130-132
    • /
    • 1999
  • The finite element method (FEM) is suitable for the analysis of a complicated region that includes nonlinear materials, whereas the boundary element method (BEM) is naturally effective for analyzing a very large region with linear characteristics. Therefore, considering the advantages in both methods, a novel algorithm for the alternate application of the FEM and BEM to magnetic field problems with the open boundary is presented. This approach avoids the disadvantages of the typical numerical methods with the open boundary problem such as a great number of unknown values for the FEM and non-symmetric matrix for the Hybrid FE-BE method. The solution of the overall problems is obtained by iterative calculations accompanied with the new acceleration method.

  • PDF

Comparison of Biot-Savart's Law and 3D FEM in the Study of Electromagnetic Forces Acting on End Winding

  • Kim, Ki-Chan
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.3
    • /
    • pp.369-374
    • /
    • 2011
  • An induction motor operated with high voltage source generally generates high current in starting mode and has a long transient time after being started. This large and sustaining starting current causes the end windings of the stator to have excessive electromagnetic force. This force is the source of vibration and has a negative and serious influence on the insulation of end windings. Therefore, designing the end winding part with an appropriate support system is needed. To design the support ring enclosing the end windings, we analyze the distribution of electromagnetic force on the end windings by applying the Biot-Savart's law and the 3D finite element method (FEM), and comparing two simulation methods. Finally, we verify the safety of the support structure of the end winding part using stress analysis, which is analyzed with the electromagnetic forces from the 3D FEM simulation.

Analyzing the contact problem of a functionally graded layer resting on an elastic half plane with theory of elasticity, finite element method and multilayer perceptron

  • Yaylaci, Murat;Yayli, Mujgen;Yaylaci, Ecren Uzun;Olmez, Hasan;Birinci, Ahmet
    • Structural Engineering and Mechanics
    • /
    • v.78 no.5
    • /
    • pp.585-597
    • /
    • 2021
  • This paper presents a comparative study of analytical method, finite element method (FEM) and Multilayer Perceptron (MLP) for analysis of a contact problem. The problem consists of a functionally graded (FG) layer resting on a half plane and pressed with distributed load from the top. Firstly, analytical solution of the problem is obtained by using theory of elasticity and integral transform techniques. The problem is reduced a system of integral equation in which the contact pressure are unknown functions. The numerical solution of the integral equation was carried out with Gauss-Jacobi integration formulation. Secondly, finite element model of the problem is constituted using ANSYS software and the two-dimensional analysis of the problem is carried out. The results show that contact areas and the contact stresses obtained from FEM provide boundary conditions of the problem as well as analytical results. Thirdly, the contact problem has been extended based on the MLP. The MLP with three-layer was used to calculate the contact distances. Material properties and loading states were created by giving examples of different values were used at the training and test stages of MLP. Program code was rewritten in C++. As a result, average deviation values such as 0.375 and 1.465 was obtained for FEM and MLP respectively. The contact areas and contact stresses obtained from FEM and MLP are very close to results obtained from analytical method. Finally, this study provides evidence that there is a good agreement between three methods and the stiffness parameters has an important effect on the contact stresses and contact areas.

Analysis for Effects of Slope Failure Behavior by Finite Element Method (유한요소법에 의한 사면붕괴 거동해석에 미치는 영향분석)

  • 김영민
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.5
    • /
    • pp.19-28
    • /
    • 1999
  • In this paper, an application of finite element procedure for the analysis of slope failure behavior has been studied. The most widely accepted methods in analyzing the slope stability problems are mostly based on limit equilibrium method. And the finite element method is widely accepted to analyze stress and displacements. This paper shows how the factor of safety calculated in the finite element method can be systematically incorporated into slope stability. In analyzing the slope failure behavior by finite element method, the effects of computational method and the results have been discussed. And several computations of slope stabilities were carried out to compare the finite element analysis results with those obtained by methods of slices based on the limit equilibrium analysis.

  • PDF

A Study on the Instantaneous Characteristics Analysis Method of PMSM using Slot Equivalent Circuit (슬롯등가회로를 이용한 영구자석모터의 순시치 해석법연구)

  • Won, Sung Hong;Han, Ki-Soo
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.66 no.1
    • /
    • pp.1-6
    • /
    • 2017
  • Recently, many motor analysis methods have been developed and studied. Among these methods, the finite element method(FEM) and the analytic method are most popular in field engineers because of the accuracy of FEM and the convenience and rapid analysis time of the analytic method. Contrary, the finite element method has a weakness in calculation time and it is not easy to obtain the instantaneous characteristics value of motor with the analytic method. In this paper, the authors proposes a novel method for calculating the instantaneous characteristics of motors with the magnetic slot equivalent circuit.

Analysis of Core Losses in Capacitor-Run Single Phase Induction Motor Using the Finite Element Methods (유한요소법을 이용한 캐패시터 운전형 단상 유도전동기의 철손해석)

  • Min, Byoung-Wook;Lee, Ju
    • Proceedings of the KIEE Conference
    • /
    • 1999.07a
    • /
    • pp.342-344
    • /
    • 1999
  • This paper presents the analysis of core losses in capacitor-run single phase induction motors using the finite element methods. The double revolving field theory can be used for the analysis to assess the quantitative and qualitative performance of the single-phase induction motor. But it is difficult to evaluate accurately the core losses. It is more difficult to segregate stator and rotor core losses at no-load and load conditions. Numerical analysis such as FEM can be used effectively for the accurate calculation of core losses and motors performances. In this paper, the coupling method of core loss characteristic equation and FEM are proposed for the accurate calculation of core losses in the stator and rotor. The FFT is also used to calculate fundamental and harmonic components in the yoke and teeth parts of motor.

  • PDF

A Study on Combination of Various Numerical Analysis Methods (이종해법의 병용에 관한 연구)

  • Im, Jee-Won;Choo, Dong-Woog;Han, Seok-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2000.07e
    • /
    • pp.99-103
    • /
    • 2000
  • The finite element method (FEM) is suitable for the analysis of a complicated region that includes nonlinear materials, whereas the boundary element method (BEM) is naturally effective for analyzing a very large region with linear characteristics. Therefore, considering the advantages in both methods, a novel algorithm for the alternate application of the FEM and BEM to magnetic field problems with the open boundary is presented. This approach avoids the disadvantages of the typical numerical methods with the open boundary problem such as a great number of unknown values for the FEM and non-symmetric matrix for the Hybrid FE-BE method. The solution of the overall problems is obtained by iterative calculations accompanied with the new acceleration method.

  • PDF

Biomechanical analysis for different mandibular total distalization methods with clear aligners: A finite element study

  • Sewoong Oh;Youn-Kyung Choi;Sung-Hun Kim;Ching-Chang Ko;Ki Beom Kim;Yong-Il Kim
    • The korean journal of orthodontics
    • /
    • v.53 no.6
    • /
    • pp.420-430
    • /
    • 2023
  • Objective: The purpose of this finite element method (FEM) study was to analyze the biomechanical differences and tooth displacement patterns according to the traction direction, methods, and sites for total distalization of the mandibular dentition using clear aligner treatment (CAT). Methods: A finite element analysis was performed on four FEM models using different traction methods (via a precision cut hook or button) and traction sites (mandibular canine or first premolar). A distalization force of 1.5 N was applied to the traction site by changing the direction from -30 to +30° to the occlusal plane. The initial tooth displacement and von Mises stress on the clear aligners were analyzed. Results: All CAT-based total distalization groups showed an overall trend of clockwise or counterclockwise rotation of the occlusal plane as the force direction varied. Mesiodistal tipping of individual teeth was more prominent than that of bodily movements. The initial displacement pattern of the mandibular teeth was more predominant based on the traction site than on the traction method. The elastic deformation of clear aligners is attributed to unintentional lingual tipping or extrusion of the mandibular anterior teeth. Conclusions: The initial tooth displacement can vary according to different distalization strategies for CAT-based total distalization. Discreet application and biomechanical understanding of traction sites and directions are necessary for appropriate mandibular total distalization.