• Title/Summary/Keyword: finite element methods

Search Result 2,254, Processing Time 0.03 seconds

The non-linear FEM analysis of different connection lengths of internal connection abutment (내측 연결형 임플란트 지대주의 체결부 길이 변화에 따른 비선형 유한요소법적 응력분석)

  • Lee, Yong-Sang;Kang, Kyoung-Tak;Han, Dong-Hoo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.54 no.2
    • /
    • pp.110-119
    • /
    • 2016
  • Purpose: This study is aimed to assess changes of stress distribution dependent on different connection lengths and placement of the fixture top relative to the ridge crest. Materials and methods: The internal-conical connection implant which has a hexagonal anti-rotation index was used for FEM analysis on stress distribution in accordance with connection length of fixture-abutment. Different connection lengths of 2.5 mm, 3.5 mm, and 4.5 mm were designed respectively with the top of the fixture flush with residual ridge crest level, or 2 mm above. Therefore, a total of 6 models were made for the FEM analysis. The load was 170 N and 30-degree tilted. Results: In all cases, the maximum von Mises stress was located adjacent to the top portion of the fixture and ridge crest in the bone. The longer the connection length was, the lower the maximum von Mises stress was in the fixture, abutment, screw and bone. The reduction rate of the maximum von Mises stress depending on increased connection length was greater in the case of the fixture top at 2 mm above the ridge crest versus flush with the ridge crest. Conclusion: It was found that the longer the connection length, the lower the maximum von Mises stress appears. Furthermore, it will help prevent mechanical or biological complications of implants.

Effect of Separation Between Main and Divergent Tunnels in Divergence Section of Double-Deck Tunnel on the Stability (복층터널 분기구에서의 터널 이격에 따른 안정성 영향)

  • La, You-Sung;Kim, Bum-Joo
    • Journal of the Korean Geosynthetics Society
    • /
    • v.15 no.2
    • /
    • pp.45-54
    • /
    • 2016
  • Double deck tunnels are considered to have a large demand in a near future for solving traffic congestion problems and overcoming the limitations in constructing new tunnels. This study presents a numerical investigation using finite element (FE) analysis on the behaviors of the tunnels and the stability of pillars in a divergence section where single tunnel is diverged from a main line double deck tunnel. The effects of the separation distance between the diverged and the main tunnels and the ground condition were examined through the FE analysis by varying the separation distance from 0.1D to 2.0D (D: diameter of main tunnel) and the rock class from class I to V, respectively, and the analysis results were compared with those using empirical methods, strength-stress ratio, and the volume of interference. The FE analysis results indicated that the separation distance has a larger effect on tunnel behaviors, compared with the rock strength, and a single tunnel with a large cross section is more favorable than two separated tunnels for tunnel stability when the separation distance is below 0.7D.

Dynamic Characteristics Analysis of Spherical Shell with Initial Deflection(II) - Effects of Initial Deflection - (초기 처짐을 갖는 Spherical Shell의 동적 특성에 관한 연구(II) - 초기 처짐에 따른 동적 특성 -)

  • Cho, Jin-Goo
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.40 no.5
    • /
    • pp.91-99
    • /
    • 1998
  • The widespread use of thin shell structures has created a need for a systematic method of analysis which can adequately account for arbitrary geometric form and boundary conditions as well as arbitrary general type of loading. Therefore, the stress and analysis of thin shell has been one of the more challenging areas of structural mechanics. A wide variety of numerical methods have been applied to the governing differential equations for spherical and cylindrical structures with a few results applicable to practice. The analysis of axisymmetric spherical shell is almost an every day occurrence in many industrial applications. A reliable and accurate finite element analysis procedure for such structures was needed. Dynamic loading of structures often causes excursions of stresses well into the inelastic range and the influence of geometry changes on the response is also significant in many cases. Therefore both material and geometric nonlinear effects should be considered. In general, the shell structures designed according to quasi-static analysis may fail under conditions of dynamic loading. For a more realistic prediction on the load carrying capacity of these shell, in addition to the dynamic effect, consideration should also include other factors such as nonlinearities in both material and geometry since these factors, in different manner, may also affect the magnitude of this capacity. The objective of this paper is to demonstrate the dynamic characteristics of spherical shell. For these purposes, the spherical shell subjected to uniformly distributed step load was analyzed for its large displacements elasto-viscoplastic static and dynamic response. Geometrically nonlinear behaviour is taken into account using a Total Lagrangian formulation and the material behaviour is assumed to elasto-viscoplastic model highly corresponding to the real behaviour of the material. The results for the dynamic characteristics of spherical shell in the cases under various conditions of base-radius/central height(a/H) and thickness/shell radius(t/R) were summarized as follows : The dynamic characteristics with a/H. 1) AS the a/H increases, the amplitude of displacement in creased. 2) The values of displacement dynamic magnification factor (DMF) were ranges from 2.9 to 6.3 in the crown of shell and the values of factor in the mid-point of shell were ranged from 1.8 to 2.6. 3) As the a/H increases, the values of DMF in the crown of shell is decreased rapidly but the values of DMF in mid-point shell is increased gradually. 4) The values of DMF of hoop-stresses were range from 3.6 to 6.8 in the crown of shell and the values of factor in the mid-point of shell were ranged from 2.3 to 2.6, and the values of DMF of stress were larger than that of displacement. The dynamic characteristics with t/R. 5) With the thickness of shell decreases, the amplitude of the displacement and the period increased. 6) The values of DMF of the displacement were ranged from 2.8 to 3.6 in the crown of shell and the values of factor in the mid-point of shell were ranged from 2.1 to 2.2.

  • PDF

Damage Study on the Mechanical Fastening in Laminated Composites (복합적층판(復合積層板)의 기계적(機械的) 체결부(締結部)에 관한 파손연구(破損硏究))

  • Kwan-Hyung,Song
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.27 no.4
    • /
    • pp.58-66
    • /
    • 1990
  • A series of test was performed measuring the failure strength and failure mode of Gr/Pi, $[0^{\circ}/45^{\circ}/90^{\circ}/-45^{\circ}]_s$ laminate containing a single pin loaded hole. The finite element method is applied to calculate the stress distribution in the laminates, then the failure load and the failure mode were predicted by means of the characteristic length. 12 different geometric variations were developed to analyze the effects of the ratio of specimen width to hole diameter (W/d) and ratio of edge distance to hole diameter (L/d). X-Ray of NDE methods were utilized in finding out the initial defects, damage and the fracture mechanism, and SEM(Scanning Electron Microscopes) was used the evaluation of the fracture mechanism and crack propagation around hole under tension pin loading. $[0^{\circ}/45^{\circ}/90^{\circ}/-45^{\circ}]_s$ laminate are found to be most sensitive to W/d but not so influenced by L/d. The failure mode and tensile strength predicted by the model show agreement with experiment data for pin loading bolted jointed test except range of $L/d{\leqq}3$.

  • PDF

Shear Behavior of Reinforced Concrete Beams according to Replacement Ratio of Recycled Coarse Aggregate (순환 굵은골재 치환율에 따른 철근콘크리트 보의 전단거동)

  • Kim, Sang-Woo;Jeong, Chan-Yu;Jung, Chang-Kyo;Kim, Kil-Hee
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.2
    • /
    • pp.157-164
    • /
    • 2012
  • This study evaluates the shear performance of reinforced concrete beams with recycled coarse aggregates. A total of six specimens with various replacement ratios of recycled coarse aggregates (0%, 50%, and 100%) and different amount of shear reinforcement were cast and tested in this study. A finite element analysis was performed to predict the shear behavior of the specimens with natural or recycled coarse aggregates. The FE analysis was performed using a two-dimensional nonlinear FE analysis program based on the disturbed stress field model (DSFM), which is an extension of the modified compression field theory (MCFT). Experimental results showed that the specimens with 50% and 100% replacement ratios of recycled coarse aggregates had the similar shear strength compared to the specimen with natural aggregates, regardless of the replacement ratios of recycled coarse aggregates and the amount of the shear reinforcement. Furthermore, the comparison between experimental and analytical results showed that the proposed numerical modeling methods and the analytical model, DSFM, can be successfully used to predict the shear behavior of reinforced concrete beams with recycled coarse aggregates.

Influence of twisting angle between fixed contact and movable contact on arc driving force in 3petal spiral type vacuum interrupter (3petal spiral type vacuum interrupter에서 가동접점전극과 고정접점전극간의 마주보는 각도의 변화가 아크구동력에 미치는 영향)

  • Kim, Byoung-Chul;Yun, Jae-Hun;Lee, Seung-Soo;Kang, Seong-Hwa;Lim, Kee-Joe
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.480-480
    • /
    • 2008
  • Vacuum circuit breaker(VCB) is now emerging as an alternative of gas circuit breaker(GCB) which uses SF6 gas as insulating material whose dielectric strength is outstanding. But we have to reduce SF6 gas because SF6 gas is one of greenhouse gas and efforts to reduce greenhouse gas are now trend of the world. Therefore, we can say VCB is the optimal alternative of GCB because vacuum is environmentally friendly. The vacuum interrupter is the core part of VCB to interrupt arcing current. There are mainly two methods to extinguish arc. One is radial magnetic field (RMF) method and the other is axial magnetic field (AMF) method. We deals with RMF method in this paper. Compared with AMP, RMF arc quenching method has different principle to extinguish arc. In case of RMF method, pinch effect is much larger than AMF method. Because of pinch effect RMF type contact electrodes have the single large spot which is severly damaged and melted while AMF type contact electrodes have small and multiple spots which are slightly damaged and melted. To prevent contact electrode being damaged and melted from high temperature-arc, RMF method uses Lorentz force to move arc. In this paper we calculated and compared the arc driving force of two cases and we analyzed the force acting on each part of arc by means of commercial finite element method software Maxwell 3D. They have 3petals and we considered two cases. One is the case when fixed(upper) and movable(lower) contacts are in mirror arrangement (Case 1). The other is the case when one of two contacts (movable contact) is revolved at maximum angle as possible as it can be (Case 2). And at each case above, we analyzed arc driving force at two positions, position 1 is the closest to the center of contact and position 2 is near the edge of petal on fixed contact. As a result we could find that Case 2 generated stronger arc driving force than Case 1 at position 1. But at position 2 Case 1 generated stronger arc driving force than Case 2. This simulation method can contribute to optimizing spiral-type electrode designs in a view of arc driving force.

  • PDF

Multi-DOF Real-time Hybrid Dynamic Test of a Steel Frame Structure (강 뼈대 구조물의 다자유도 실시간 하이브리드 동적 실험)

  • Kim, Sehoon;Na, Okpin;Kim, Sungil
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.2
    • /
    • pp.443-453
    • /
    • 2013
  • The hybrid test is one of the most advanced test methods to predict the structural dynamic behavior with the interaction between a physical substructure and a numerical modeling in the hybrid control system. The purpose of this study is to perform the multi-directional dynamic test of a steel frame structure with the real-time hybrid system and to evaluate the validation of the results. In this study, FEAPH, nonlinear finite element analysis program for hybrid only, was developed and the hybrid control system was optimized. The inefficient computational time was improved with a fixed number iteration method and parallel computational techniques used in FEAPH. Furthermore, the previously used data communication method and the interface between a substructure and an analysis program were simplified in the control system. As the results, the total processing time in real-time hybrid test was shortened up to 10 times of actual measured seismic period. In order to verify the accuracy and validation of the hybrid system, the linear and nonlinear dynamic tests with a steel framed structure were carried out so that the trend of displacement responses was almost in accord with the numerical results. However, the maximum displacement responses had somewhat differences due to the analysis errors in material nonlinearities and the occurrence of permanent displacements. Therefore, if the proper material model and numerical algorithms are developed, the real-time hybrid system could be used to evaluate the structural dynamic behavior and would be an effective testing method as a substitute for a shaking table test.

A Practical Analysis Method for the Design of Piled Raft Foundations (말뚝지지 전면기초의 실용적 근사해석법 개발)

  • Song, Young Hun;Song, Myung Jun;Jung, Min Hyung;Park, Yung Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.1
    • /
    • pp.83-91
    • /
    • 2017
  • In case of estimation of settlement for the piled-raft foundation, it is necessary to consider interaction among raft, piles and soil. But, simple analytic methods usually are not applicable to considering this complicated interaction. In this study, a computer-based approximate analytic method, HDPR, was developed in consideration of above mentioned interaction in order to analysis of settlement for the piled-raft foundation. The finite element method was applied to raft analysis by means of the Mindlin plate theory, and soil and piles were modeled as springs which were connected with their raft. The linear spring which can consider multi layered soil and the non-linear spring were applied to soil springs and pile springs, respectively. The raft-piles-soil interaction was reflected to each spring. In order to verify the developed analytic method, it was compared and analyzed with 3D FEM analysis, existing approximate analytic method and site monitoring data. As a result, the developed analytic method showed reasonable results of settlement estimations of raft and piles for each case. From a practical point of view, it is confirmed that this analytic method is able to apply for analysis and design of the piled-raft foundation.

The Effect of Negative Pressure Phase in Blast Load Profile on Blast Wall of Offshore Plant Topside (해양플랜트 Topside 방화벽에 폭발압의 부압구간이 미치는 영향)

  • Kang, Ki-Yeob;Choi, Kwang-Ho;Ryu, Yong-Hee;Choi, Jae-Woong;Lee, Jae-Myung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.4
    • /
    • pp.281-288
    • /
    • 2014
  • As a gas explosion is the most fatal accident in shipbuilding and offshore plant industries, all safety critical elements on the topside of offshore platforms should retain their integrity against blast pressure. Even though many efforts have been devoted to develop blast-resistant design methods in the offshore engineering field, there still remain several issues needed to be carefully investigated. From a procedure for calculation of explosion design pressure, impulse of a design pressure model having completely positive side only is determined by the absolute area of each obtained transient pressure response through the CFD analysis. The negative pressure phase in a general gas explosion, however, is often quite considerable unlike gaseous detonation or TNT explosion. The main objective of this study is to thoroughly examine the effect of the negative pressure phase on structural behavior. A blast wall for specific FPSO topside is selected to analyze structural response under the blast pressure. Because the blast wall is considered an essential structure for blast-resistant design. Pressure time history data were obtained by explosion simulations using FLACS, and the nonlinear transient finite element analyses were performed using LS-DYNA.

A Study on the Measurement of Axial Cracks in the Magnetic Flux Leakage NDT System (자기누설 비파괴 검사 시스템에서 축방향 미소결함 측정에 관한 연구)

  • Kim, Hui-Min;Park, Gwan-Soo;Rho, Yong-Woo;Yoo, Hui-Ryong;Cho, Sung-Ho;Kim, Dong-Kyu;Koo, Sung-Ja
    • Journal of the Korean Magnetics Society
    • /
    • v.22 no.2
    • /
    • pp.49-57
    • /
    • 2012
  • From among the NDT (Non-Destructive Testing) methods, the MFL (Magnetic Flux Leakage) PIG (Pipeline Inspection Gauge) is especially suitable for testing pipelines because the pipeline has high magnetic permeability. MFL PIG showed high performance in detecting the metal loss and corrosions. However, MFL PIG is difficult to detect the crack which occured by exterior-interior pressure difference in pipelines and the shape of crack is very long and narrow. Therefore, the new PIG is needed to be researched and developed for detecting the cracks. The CMFL (Circumferential MF) PIG performs magnetic fields circumferentially and can maximize the magnetic flux leakage at the cracks. In this paper, CMFL PIG is designed and the distribution of the magnetic fields is analyzed by using 3 dimensional nonlinear finite element method (FEM). By Simulating and Measuring the magnetic leakage field, it is possible to detect of axial cracks in the pipeline.