• 제목/요약/키워드: finite element methods

검색결과 2,254건 처리시간 0.033초

Notched Ring Test 저속균열 시험편의 응력확대계수정식화 (Development of Stress Intensity Factor Equation for the Notched Ring Test (NRT) Specimen)

  • 표수호;최선웅
    • 한국재료학회지
    • /
    • 제24권2호
    • /
    • pp.87-92
    • /
    • 2014
  • The Notched Ring Test(NRT) has proven to be very useful in determining the slow crack growth behavior of polyethylene pressure pipes. In particular, the test is simple and an order of magnitude shorter in experimental times as compared to the currently used Notched Pipe Test(NPT), which makes this method attractive for use as the accelerated slow crack growth test. In addition, since the NRT specimen is taken directly from the pipe, having maintained the cross-section, processing induced artifacts that would affect the slow crack growth behavior are not altered. This makes the direct comparison to the slow crack growth specimen in pipe from more meaningful. In this study, for comparison with other available slow crack growth methods, including the NPT, the stress intensity factor equation for NRT specimen was developed and demonstrated of its accuracy within 3% of that obtained from the finite element analysis. The equation was derived using a flexure formula of curved beam bending along with numerically determined geometric factors. The accuracy of the equation was successfully tested on 63, 110, 140, 160, 250, and 400 mm nominal pipe diameters, with crack depth ranging from 15 % to 45 % of the pipe wall thickness, and for standard dimensional ratio(SDR) of 9, 11, and 13.6. Using this equation the slow crack results from 110SDR11 NRT specimen were compared to that from the NPT specimen, which demonstrated that the NRT specimen was equivalent to the NPT specimen in creating the slow crack, however in much shorter experimental times.

전자기 성형에서의 변형률 속도 효과 해석 (Analysis of the Strain Rate Effect in Electro-Magnetic Forming)

  • 곽신웅;신효철;이종수
    • 대한기계학회논문집
    • /
    • 제14권5호
    • /
    • pp.1043-1058
    • /
    • 1990
  • 본 연구에서는 전자기 성형법에 의한 원통형상의 가공재의 자유 확관성형 가 공에 대해서 유한요소해석법을 이용한 변형 및 응력해석을 수행하였다. 탄소성 재료 모형을 확장하여 변형 경화율이 변형률 및 변형률 속도의 지배를 받는 변형률 속도 종 속 탄소성 재료 모형을 도입하였고, 1차 제하 이후까지 포함하여 고속 성형시 변형률 속도 효과에 의해 발생하는 현상들에 대해서 연구하였다.결과의 비교 및 논의를 위 하여, 해석대상과 성형조건, 그리고 가공재에 작용하는 자기압력은 Suzuki의 것과 동 일한 것을 사용하였다.

새이중판 지지격자로 지지된 경수로용 연료봉의 진동특성 (Vibration Characteristics of the PWR Fuel Rod Supported by New Doublet Spacer Grids)

  • 최명환;강흥석;윤경호;김형규;송기남
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.905-910
    • /
    • 2003
  • One of the methods that are used to compare and verify the supporting performance of the spacer grids developed is the vibration characteristic test. A modal test in this paper is performed for a dummy rod 3,847mm tall supported by eight New Doublet (ND) spacer grids. For the vibration test in air, nine accelerometers, one displacement sensor and one shaker are used for acquiring signals, and an I-DEAS TDAS software is employed for analyzing the signals. Also, a finite element (FE) analysis is performed by a beam-spring simple model and a contact model simulating the contact phenomenon between the rod and the fm spring. And then, the result of the FE analysis is compared with that of the modal test. The natural frequencies as well as the mode shapes calculated by the proposed contact models have a greater similarity to the test results than those by the previous beam-spring model. In addition, for grasping whether or not the modal parameters are influenced by where shaking spot is, two kinds of tests are performed; one is for the shaker attached at the fourth span (center), the other is for the shaker at the fifth span that is one span nearer to the bottom of the rod. The latter shows higher MAC than the former. Finally, the vibration displacements are measured in the range of 0.112-0.214mm for the excitation force of 0.25-0.75 N.

  • PDF

심층혼합공법의 최저 개량 심도 결정에 관한 해석적 연구 (An Analytical Study on the Determination of the Lowest Improvement Depth of Deep Mixing Method)

  • 박춘식;송지원
    • 한국지반신소재학회논문집
    • /
    • 제19권1호
    • /
    • pp.35-44
    • /
    • 2020
  • 연약지반 개량 공법 중 심층혼합공법에 대한 설계 기법으로는 복합지반으로 해석하는 방법과 말뚝지반으로 해석하는 방법이 있다. 그러나 이러한 해석에 대한 비교 연구는 부족한 실정으로 설계 시 해석 기준을 명확하게 정의 내리는 것에 어려움이 있다. 본 연구에서는 2차원 및 3차원 해석을 통해 성토 높이와 연약지반의 심도, 보강구간의 치환율을 변화시키며 각 조건별로 복합지반과 말뚝지반을 가정하여 해석하였다. 그 결과 최저 개량 심도는 3차원 해석에 비해 2차원 해석 결과가 6.85~9.08% 더 깊은 결과를 도출하였다. 또한 말뚝지반 해석의 경우 복합지반 해석에 비해 개량 심도는 12.22~14.45% 더 깊은 것을 확인하였다. 이 결과를 통하여 보다 정확한 설계를 위해서는 2차원 해석보다는 3차원 해석을 실시해야 하고, 경제적인 설계를 위해서는 복합지반으로 해석해야 하며, 안정적인 설계를 위해서는 말뚝지반 해석을 실시해야 된다고 판단된다.

이중층 라이너에서 폭발 재료 분포에 따른 변형 특성 수치해석 (Numerical Analysis of Deformation Characteristics in the Double-Layer Liner According to Explosive Material Distribution)

  • 문상호;김시조;이창희;이성
    • 한국군사과학기술학회지
    • /
    • 제19권5호
    • /
    • pp.618-628
    • /
    • 2016
  • The development of new concepts of liners is required in order to effectively neutralize the enemy's attack power concealed in the armored vehicles. A multiple-layer liner is one of possibilities and has a mechanism for explosion after penetrating the target which is known as "Behind Armor Effect." The multiple-layer explosive liner should have sufficient kinetic energy to penetrate the protective structure and explosive material react after target penetration. With this in mind, double-layer liner materials were obtained by cold spray coating methods and these material properties were experimentally characterized and used in this simulation for double-layer liners. In this study, numerical simulations in the three different layer types, i.e., single, A/B, A/B/A in terms of the layer location were verified in terms of finite element mesh sizes and numerical results for the jet tip velocity, kinetic energy, and the corresponding jet deformation characteristics were analysed in detail depending on the structure of layer types.

건축물의 낙뢰보호를 위한 HEC(Hybrid ESE-Conductor) 방식에 관한 연구 (A Study on the HEC(Hybrid ESE-Conductor) Method for Lightning Protection of Buildings)

  • 김동진;김영선;이기식
    • 전기학회논문지P
    • /
    • 제57권2호
    • /
    • pp.146-152
    • /
    • 2008
  • The frequency of lightning is increased due to improbable weather condition and global wanning. This phenomenon increases economical damage as well as human damage. Advanced countries like europe and north america have applied the facility standard of lightning by accumulating a store of quantitative data about lightning research. Lightning facility is composed of the lightning accepting part for induction lightning, ground connected electrode which conducts lightning current. The lightning accepting part is composed of normal rod, horizontal conductor, ESE lightning rod. Moreover, lightning accepting part is taken to use by the method of protection. This paper suggests HEC(Hybrid ESE-Conductor) method which mixes horizontal conductor and ESE lightning rod. This is also discovered by experiment that the starting point of corona discharge current is low, so it is efficient for lightning protection comparing with other methods. Moreover, distribution of electric field is analyzed qualitatively by finite element method. It also results in the relation of the starting point of corona discharge current. Corona discharge current makes minute current about some ${\mu}A$ between the electrodes by the strength of electric field. Also it occurs insulation destruction of gas, and it is developed to the shape of streamer by increase of the strength of electric field. We can find that the initial occurrence of streamer and contact probability of lightning can have advantage after researching the starting point of corona discharge current and discharge current of lightning striking point. This research demonstrates that the suggested HEC method is economically competitive as a lightning protection facility, and it takes a capably perfect role.

A Dual Modeling Method for a Real-Time Palpation Simulator

  • Kim, Sang-Youn;Park, Se-Kil;Park, Jin-Ah
    • Journal of Information Processing Systems
    • /
    • 제8권1호
    • /
    • pp.55-66
    • /
    • 2012
  • This paper presents a dual modeling method that simulates the graphic and haptic behavior of a volumetric deformable object and conveys the behavior to a human operator. Although conventional modeling methods (a mass-spring model and a finite element method) are suitable for the real-time computation of an object's deformation, it is not easy to compute the haptic behavior of a volumetric deformable object with the conventional modeling method in real-time (within a 1kHz) due to a computational burden. Previously, we proposed a fast volume haptic rendering method based on the S-chain model that can compute the deformation of a volumetric non-rigid object and its haptic feedback in real-time. When the S-chain model represents the object, the haptic feeling is realistic, whereas the graphical results of the deformed shape look linear. In order to improve the graphic and haptic behavior at the same time, we propose a dual modeling framework in which a volumetric haptic model and a surface graphical model coexist. In order to inspect the graphic and haptic behavior of objects represented by the proposed dual model, experiments are conducted with volumetric objects consisting of about 20,000 nodes at a haptic update rate of 1000Hz and a graphic update rate of 30Hz. We also conduct human factor studies to show that the haptic and graphic behavior from our model is realistic. Our experiments verify that our model provides a realistic haptic and graphic feeling to users in real-time.

베리오그램 모델 변화에 따른 정규 크리깅 보간법의 민감도분석 (Sensitivity Analysis of Ordinary Kriging Interpolation According to Different Variogram Models)

  • 우광성;박진환;이희정
    • 한국전산구조공학회논문집
    • /
    • 제21권3호
    • /
    • pp.295-304
    • /
    • 2008
  • 본 연구는 두 가지 주요 목적을 갖고 있다. 첫째는, 실험적 베리오그램을 작성하는데 필수적인 분리거리 허용한계를 얼마로 하느냐에 따라 변화되는 베리오그램 모델링에 기초를 둔 정규크리깅 보간법을 유한요소법에 적용이 가능한 가를 시험하는 것이다. 둘째는, 다항식모델, 가우스모델 및 구형모델의 선택에 따른 정확성을 조사하는 것이다. 이 목적을 위해 가우스 적분점에서 취득된 응력값 데이터로터 새로운 응력장을 예측하기 위해 가중-최소제곱법이 적용되었다. 여기서 가중치는 동일한 값을 사용하는 기존의 방식과 달리 응력값들의 보간을 위해 사용되는 실험적 및 이론적 베리오그램에 의해 결정된다. 제안된 접근방식의 타당성을 보이기 위해 2개의 수치예제를 테스트하였다. 이 논문에서 사용된 수치예제의 경우 25% 분리거리 허용한계를 사용한 가우스모델이 참고문헌의 이론 해들과 가장 잘 일치하는 것을 알 수 있었다.

Integrating OpenSees with other software - with application to coupling problems in civil engineering

  • Gu, Quan;Ozcelik, Ozgur
    • Structural Engineering and Mechanics
    • /
    • 제40권1호
    • /
    • pp.85-103
    • /
    • 2011
  • Integration of finite element analysis (FEA) software into various software platforms is commonly used in coupling systems such as systems involving structural control, fluid-structure, wind-structure, soil-structure interactions and substructure method in which FEA is used for simulating the structural responses. Integrating an FEA program into various other software platforms in an efficient and simple way is crucial for the development and performance of the entire coupling system. The lack of simplicity of the existing integration methods makes this integration difficult and therefore entails the motivation of this study. In this paper, a novel practical technique, namely CS technique, is presented for integrating a general FEA software framework OpenSees into other software platforms, e.g., Matlab-$Simulink^{(R)}$ and a soil-structure interaction (SSI) system. The advantage of this integration technique is that it is efficient and relatively easy to implement. Instead of OpenSees, a cheap client handling TCL is integrated into the other software. The integration is achieved by extending the concept of internet based client-server concept, taking advantage of the parameterization framework of OpenSees, and using a command-driven scripting language called tool command language (TCL) on which the OpenSees' interface is based. There is no need for any programming inside OpenSees. The presented CS technique proves as an excellent solution for the coupling problems mentioned above (for both linear and nonlinear problems). Application examples are provided to validate the integration method and illustrate the various uses of the method in the civil engineering.

Multi-objective optimization of tapered tubes for crashworthiness by surrogate methodologies

  • Asgari, Masoud;Babaee, Alireza;Jamshidi, Mohammadamin
    • Steel and Composite Structures
    • /
    • 제27권4호
    • /
    • pp.427-438
    • /
    • 2018
  • In this paper, the single and multi-objective optimization of thin-walled conical tubes with different types of indentations under axial impact has been investigated using surrogate models called metamodels. The geometry of tapered thin-walled tubes has been studied in order to achieve maximum specific energy absorption (SEA) and minimum peak crushing force (PCF). The height, radius, thickness, tapered angle of the tube, and the radius of indentation have been considered as design variables. Based on the design of experiments (DOE) method, the generated sample points are computed using the explicit finite element code. Different surrogate models including Kriging, Feed Forward Neural Network (FNN), Radial Basis Neural Network (RNN), and Response Surface Modelling (RSM) comprised to evaluate the appropriation of such models. The comparison study between surrogate models and the exploration of indentation shapes have been provided. The obtained results show that the RNN method has the minimum mean squared error (MSE) in training points compared to the other methods. Meanwhile, optimization based on surrogate models with lower values of MSE does not provide optimum results. The RNN method demonstrates a lower crashworthiness performance (with a lower value of 125.7% for SEA and a higher value of 56.8% for PCF) in comparison to RSM with an error order of $10^{-3}$. The SEA values can be increased by 17.6% and PCF values can be decreased by 24.63% by different types of indentation. In a specific geometry, higher SEA and lower PCF require triangular and circular shapes of indentation, respectively.