• 제목/요약/키워드: finite element methods

검색결과 2,238건 처리시간 0.025초

An ALE Finite Element Method for Baffled Fuel Container in Yawing Motion

  • Cho, Jin-Rae;Lee, Hong-Woo;Yoo, Wan-Suk;Kim, Min-Jeong
    • Journal of Mechanical Science and Technology
    • /
    • 제18권3호
    • /
    • pp.460-470
    • /
    • 2004
  • A computational analysis of engineering problems with moving domain or/and boundary according to either Lagrangian or Eulerian approach may encounter inherent numerical difficulties, the extreme mesh distortion in the former and the material boundary indistinctness in the latter. In order to overcome such defects in classical numerical approaches, the ALE(arbitrary Lagrangian Eulerian) method is widely being adopted in which the finite element mesh moves with arbitrary velocity. This paper is concerned with the ALE finite element formulation, aiming at the dynamic response analysis of baffled fuel-storage container in yawing motion, for which the coupled time integration scheme, the remeshing and smoothing algorithm and the mesh velocity determination are addressed. Numerical simulation illustrating theoretical works is also presented.

움직임을 고려한 전기기기의 유한요소기법에 관한 연구 (A study on Moving Surface Method to Consider a Motion of Electrical Machine with Finite Element Method)

  • 원성홍;임승빈;배재남;김명진;이주
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제55권12호
    • /
    • pp.589-595
    • /
    • 2006
  • As one of numerical methods, the Finite Element Method (FEM) is very widely used to analyze electrical machines these days. However, the most electrical machines have a motion and it is very important to consider a motion in electrical machine analysis. In this paper, Moving Surface Method is suggested as a new approach to consider a motion and discuss its advantages and disadvantages. And also, a finite element analysis program which applied Moving Surface Method is developed and we evaluate its results compared with experimental results of a real model.

자기회로법과 유한요소법을 결합한 전기기기 설계 (An Electrical Machine Design Technique Combining Magnetic Equivalent Circuit and Finite Element Methods)

  • 최홍순;한송엽
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 추계학술대회 논문집 학회본부 A
    • /
    • pp.18-20
    • /
    • 1999
  • In this paper, the space mapping algorithm is proposed for the design of electric machines. By the algorithm, we can combine the magnetic equivalent circuit and the finite element models mathematically and got the final design parameters with a few iterations while preserving the accuracy offered by the finite element model. The finite element model is generated by parametric techniques. For the validity of this algorithm, a simple permanent magnet device with fringing and leakage flux is dealt as a numerical example.

  • PDF

베어링 지지 효과를 고려한 3 차원 로터동역학 해석 (Three-Dimensional Rotordynamic Analysis Considering Bearing Support Effects)

  • 박효근;김동현;김명국;전승배
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.902-909
    • /
    • 2006
  • In this study, three-dimensional rotordynamic analyses have been conducted using equivalent beam, hybrid and fun three-dimensional models. The Present computational method is based on the general finite element method with rotating gyroscopic effects of a rotor system. General purpose commercial finite element code, SAMCEF which includes practical rotordynamics module with various types of rotor analysis methods and bearing elements is applied. For the purpose of numerical verification, comparison study for a benchmark rotor model with support bearings is performed first. Detailed finite element models based on three different modeling concepts are constructed and then computational analyses are conducted for the realistic and complex three-dimensional rotor system. The results for rotor stability and mass unbalance response are presented and compared with the experimental vibration test conducted in this study.

  • PDF

사면안정해석에 있어서의 유한요소법과 한계평형법의 비교 (Comparative study between Finite Element Method and Limit Equilibrium Method on Slope Stability Analysis)

  • 이동엽;유충식
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.483-490
    • /
    • 2002
  • This paper presents the results of a comparative study between FEM and LEM on slope stability analysis. For validation, factors of safety were compared between FEM and LEM. The results from the two methods were in good agreement suggesting that the FEM with the shear strength reduction method can be effectively used on slope stability analyses. A series of analysis were then performed using the FEM for various constitutive laws, slope angles, flow rules, and the finite element discretizations. Among the findings, the finite element method in conjunction with the shear strength reduction method can provide reasonable results in terms of factor of safety. Also revealed is that the results of FEM can be significantly affected by the way in which the type of constitutive law and flow rule are selected.

  • PDF

유한요소 교호법을 이용한 무한 물체에 존재하는 임의 형상의 삼차원 균열 해석 (Analysis of Arbitrarily Shaped Three Dimensional Cracks in an Infinite Body Using the FEAM)

  • 김태순;박재학;박치용
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.278-283
    • /
    • 2004
  • Many analysis methods, including finite element method, have been suggested and used for assessing the integrity of cracked structures. In the paper, in order to analyze arbitrarily shaped three dimensional cracks in an infinite body, the finite element alternating method is extended. The cracks are modeled as a distribution of displacement discontinuities by the displacement discontinuity method and the symmetric Galerkin boundary element method. Applied the proposed method to several example problems for planner cracks in finite bodies, the accuracy and efficiency of the method were demonstrated.

  • PDF

선형적 물성변화를 고려하는 유한요소법을 이용한 2.5차원 전자탐사 수치모델링 (2.5 Dimensional Electromagnetic Finite Element Numerical modeling using linear conductivity variation)

  • 고광범;서백수
    • 산업기술연구
    • /
    • 제18권
    • /
    • pp.131-138
    • /
    • 1998
  • Numerical modeling for electromagnetic exploration methods are essential to understand behaviours of electromagnetic fields in complex subsurfaces. In this study, a finite element method was adopted as a numerical scheme for the 2.5-dimensional forward problem. And a finite element equation considering linear conductivity variation was proposed when 2.5-dimensional differential equation to couple eletric and magnetic field was implemented. Model parameters were investigated for near-field with large source effects and far-field with responses dominantly by homogeneous half-space. Numerical responses by this study were compared with analytic solutions in homogeneous half-space and compared with other three dimensional numerical results.

  • PDF

무요소절점법의 수치해 정도 향상을 위한 연구 (A Study on the Enhancement of the Solution Accuracy of Meshless Particle Method)

  • 이상호;김상효;강용규;박철원
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1997년도 봄 학술발표회 논문집
    • /
    • pp.3-10
    • /
    • 1997
  • Meshless particle method is a numerical technique which does not use the concept of element. This method can easily handle special engineering problems which cause difficulty in the use of finite element method, however it has a drawback that essential boundary condition is not satisfied. In this paper, several studies for satisfying essential boundary conditions and enhancing the accuracy of solutions are discussed. Particular emphasis is placed on a new numerical technique in which finite elements are used on the boundaries to satisfy the essential boundary conditions and meshless particle method is used in the interior domain. For coupling of the two methods interface elements are introduced into the zone between the subdomains using meshless particle method and finite element method. The shape functions and the approximated displacement functions of the interface element are derived with the ramp function based on the shape function of finite elements. The whole numerical procedures are formulated by Galerkin method. Several numerical examples for enhancing the accuracy of solution in the meshless particle method and a new coupling method are presented.

  • PDF

개량역 자장간의 해석에 있어서 Neumann 및 Diichlet 경계조건을 고려한 유한요소법 및 경계적분법 (A Composite of FEM and BIM Dealing with Neumann and Dirichlet Boundary Conditions for Open Boundary magnetic Field Problems)

  • 정현교;한송엽
    • 대한전기학회논문지
    • /
    • 제36권11호
    • /
    • pp.777-782
    • /
    • 1987
  • A new composite method of finite element and boundary integral methods is presented to solve the two dimensional magnetostatic field problems with open boundary. The method can deal with the current source of the boundary integral regin where the boundary integral method is applied, and also Neumann and Dirichlet boundary conditions at the interfacial boundary between the boundary integral region and the finite element region where the finite element method is applied. The new approach has been applied to a simple linear problem to verify the usefulness. It is shown that the proposed algorithm gives more accurate results than the finite element methed under the same elementdiscretization.

  • PDF

An analytical approach for aeroelastic analysis of tail flutter

  • Gharaei, Amin;Rabieyan-Najafabadi, Hamid;Nejatbakhsh, Hossein;Ghasemi, Ahmad Reza
    • Advances in Computational Design
    • /
    • 제7권1호
    • /
    • pp.69-79
    • /
    • 2022
  • In this research, the aeroelastic instability of a tail section manufactured from aluminum isotropic material with different shell thickness investigated. For this purpose, the two degrees of freedom flutter analytical approach are used, which is accompanied with simulation by finite element analysis. Using finite element analysis, the geometry parameters such as the center of mass, the aerodynamic center and the shear center are determined. Also, by simulation of finite element method, the bending and torsional stiffnesses for various thickness of the airfoil section are determined. Furthermore, using Lagrange's methods the equations of motion are derived and modal frequency and critical torsional/bending modes are discussed. The results show that with increasing the thickness of the isotropic airfoil section, the flutter and divergence speeds increased. Compared of the obtained results with other research, indicates a good agreement and reliability of this method.