• Title/Summary/Keyword: finite element method(FEM)

Search Result 3,154, Processing Time 0.031 seconds

Investigation of Burst Pressures in PWR Primary Pressure Boundary Components

  • Namgung, Ihn;Giang, Nguyen Hoang
    • Nuclear Engineering and Technology
    • /
    • v.48 no.1
    • /
    • pp.236-245
    • /
    • 2016
  • In a reactor coolant system of a nuclear power plant (NPP), an overpressure protection system keeps pressure in the loop within 110% of design pressure. However if the system does not work properly, pressure in the loop could elevate hugely in a short time. It would be seriously disastrous if a weak point in the pressure boundary component bursts and releases radioactive material within the containment; and it may lead to a leak outside the containment. In this study, a gross deformation that leads to a burst of pressure boundary components was investigated. Major components in the primary pressure boundary that is structurally important were selected based on structural mechanics, then, they were used to study the burst pressure of components by finite element method (FEM) analysis and by number of closed forms of theoretical relations. The burst pressure was also used as a metric of design optimization. It revealed which component was the weakest and which component had the highest margin to bursting failure. This information is valuable in severe accident progression prediction. The burst pressures of APR-1400, AP1000 and VVER-1000 reactor coolant systems were evaluated and compared to give relative margins of safety.

Simulation Based Investigation of Focusing Phased Array Ultrasound in Dissimilar Metal Welds

  • Kim, Hun-Hee;Kim, Hak-Joon;Song, Sung-Jin;Kim, Kyung-Cho;Kim, Yong-Buem
    • Nuclear Engineering and Technology
    • /
    • v.48 no.1
    • /
    • pp.228-235
    • /
    • 2016
  • Flaws at dissimilar metal welds (DMWs), such as reactor coolant systems components, Control Rod Drive Mechanism (CRDM), Bottom Mounted Instrumentation (BMI) etc., in nuclear power plants have been found. Notably, primary water stress corrosion cracking (PWSCC) in the DMWs could cause significant reliability problems at nuclear power plants. Therefore, phased array ultrasound is widely used for inspecting surface break cracks and stress corrosion cracks in DMWs. However, inspection of DMWs using phased array ultrasound has a relatively low probability of detection of cracks, because the crystalline structure of welds causes distortion and splitting of the ultrasonic beams which propagates anisotropic medium. Therefore, advanced evaluation techniques of phased array ultrasound are needed for improvement in the probability of detection of flaws in DMWs. Thus, in this study, an investigation of focusing and steering phased array ultrasound in DMWs was carried out using a time reversal technique, and an adaptive focusing technique based on finite element method (FEM) simulation. Also, evaluation of focusing performance of three different focusing techniques was performed by comparing amplitude of phased array ultrasonic signals scattered from the targeted flaw with three different time delays.

A novel two-dimensional approach to modelling functionally graded beams resting on a soil medium

  • Chegenizadeh, Amin;Ghadimi, Behzad;Nikraz, Hamid;Simsek, Mesut
    • Structural Engineering and Mechanics
    • /
    • v.51 no.5
    • /
    • pp.727-741
    • /
    • 2014
  • The functionally graded beam (FGB) is investigated in this study on both dynamic and static loading in case of resting on a soil medium rather than on the usual Winkler-Pasternak elastic foundation. The powerful ABAQUS software was used to model the problem applying finite element method. In the present study, two different soil models are taken into account. In the first model, the soil is assumed to be an elastic plane stress medium. In the second soil model, the Drucker-Prager yield criterion, which is one of the most well-known elastic-perfectly plastic constitutive models, is used for modelling the soil medium. The results are shown to evaluate the effects of the different soil models, stiffness values of the elastic soil medium on the normal and shear stress and free vibration properties. A comparison was made to those from the existing literature. Numerical results show that considering real soil as a continuum space affects the results of the bending and the modal properties significantly.

Design and Analysis of a High Speed Single-phase Hybrid 4/4 poles SRM for Hammer Beaker Application

  • Jeong, Kwang-Il;Lee, Dong-Hee;Ahn, Jin-Woo
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.5
    • /
    • pp.1978-1985
    • /
    • 2018
  • In this paper, a novel single-phase hybrid switched reluctance motor (HSRM) is proposed for hammer breaker application. The hammer breaker requires only unidirectional rotation and high-speed operation. To satisfy the requirements and eliminate torque dead-zone, the rotor of the proposed 4/4 poles SRM is designed with wider pole arc and non-uniform air-gap. This motor has a simple structure and produces low torque ripple. Permanent magnets (PMs) are mounted on the inner stator at a certain position which enables it to park the rotor for self-start and create positive cogging torque in the torque dead-zone. Compared with conventional single-phase switched reluctance motor, HSRM has an increased torque density and relatively low torque ripple. To verify effectiveness, finite element method (FEM) is employed to analyze the performance of the proposed structure. Then, the proposed motor is compared with the existing motor drive system for the same application. The proposed HSRM is easy to manufacture along with competitive performance.

Design and Analysis of Characteristics of Interior Permanent Magnet BLDC Motor That Consider Shape-Ratio of Permanent Magnet (영구자석 형상비를 고려한 영구자석 매입형 BLDC 전동기 설계 및 특성해석)

  • Yun Keun-Young;Rhyu Se-Hyun;Yang Byoung-Yull;Kwon Byung-Il
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.1
    • /
    • pp.1-8
    • /
    • 2006
  • Now a day, owing to high efficiency and easy speed control of brushless DC(BLDC) motor, the demand of BLDC motor that has high power and low noises are increasing. Especially demand of interior permanent magnet(IPM) BLOC with high efficiency and high power in electric motion vehicle is increasing. IPM BLDC motor has permanent magnets in the rotor. Because it has two different flux paths, magnetic reluctance differences are generated in d-axis and q-axis. As the result of the inductance differences that are generated by the saliency(magnetic reluctance differences) in the rotor, the motor has structure advantage that has the additional reluctance torque except a magnet torque and because magnet is situated inside the rotor, the mechanical structure is strong. Therefore IPM BLDC motor makes possible to have high speed and high power. This paper presents a design and characteristics analysis of IPM BLDC motor for electric vehicle. To design IPM BLDC motor, surface mounted permanent magnet(SPM) BLDC motor is used as the initial design model. According to the shape-ratio() of permanent magnet, the characteristic of IPM BLDC motor is analyzed by Finite element method (FEM). Characteristics analysis results of the designed motor are compared with the experimental results.

Fabrication of Multi-stepped Three Dimensional Silicon Microstructure for INS Grade Servo Accelerometer (관성 항법 장치급 서보 가속도계용 다단차 3차원 실리콘 미세 구조물 제작)

  • Yee, Young-Joo;Lee, Sang-Hoon;Chun, Kuk-Jin;Kim, Yong-Kwon;Cho, Dong-Il
    • Proceedings of the KIEE Conference
    • /
    • 1996.11a
    • /
    • pp.425-427
    • /
    • 1996
  • New fabrication technique was developed to make three dimensional silicon microstructure with five fold vertical steps through entire wafer thickness. Each step is pre-defined on multiply stacked thermal oxide and silicon nitride (O/N) layers by photolithographies. Multi-stepped silicon microstructure is formed by anisotropic etch in aqueous KOH solution with the patterned nitride film as masking layer. Fabricated microstructure consists of four $16{\mu}m$ thick flexural spring beams, $290{\mu}m$ thick proof mass, mesas for overrange stop with $10{\mu}m$ height from the surface of the proof mass, and the other mesas and V grooves used for assembling this structure to the packaging frame of pendulous servo accelerometer. Using the numerical finite element method (FEM) simulator: ABAQUS, mechanical characteristics of the fabricated microstructure by the developed technique was compared with those of the same structure processed by one step silicon bulk etch followed by oxidation and patterning the etched region.

  • PDF

Analysis on Eddy Current Losses for Cylindrical Linear Oscillatory Actuator with Halbach Array according to Drive Voltage Waveform (영구자석 Halbach형 원통형 액추에이터의 구동전압 파형에 따른 와전류 손실)

  • Jang, Seok-Myeong;Kim, Hyun-Kyu;Park, Ji-Hoon;Ko, Kyoung-Jin;Choi, Jang-Young;Kim, Il-Jung
    • Proceedings of the KIEE Conference
    • /
    • 2009.04b
    • /
    • pp.49-51
    • /
    • 2009
  • This paper deals with the analysis on eddy current losses for cylindrical linear oscillatory actuator (LOA) with Halbach array mover according to voltage waveform. This paper presents analytical procedures for calculation of eddy current losses using Poynting theorem. On the basis of the magnetic vector potential and a two-dimensional (2-d) cylindrical coordinate system, this paper derived analytical solutions of eddy current tosses using phase current analysis. The eddy current losses of each harmonic obtained by fast Fourier transform (FFT) analysis of phase current are compared with results obtained from finite-element method (FEM). Particularly, this paper shows that the eddy current losses of cylindrical LOA according to square voltage waveform are more significant than those according to sinusoidal voltage waveform.

  • PDF

Design of a Two-Axis Force Sensor for Measuring Arm Force of an Upper-Limb Rehabilitation Robot (상지재활로봇의 팔힘측정용 2축 힘센서 설계)

  • Kim, Gab-Soon
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.2
    • /
    • pp.137-143
    • /
    • 2015
  • This paper describes the design of a two-axis force sensor with two step plate beams for measuring forces in an upper-limb rehabilitation robot. The two-axis force sensor is composed of a Fz force sensor and a Ty torque sensor. The Fz force sensor measures the force applied to a patient's arm pushed by a rehabilitation robot and the force of patient's arm. The Ty torque sensor measures the torque generated by a patient's arm motion in an emergency. The structure of sensor is composed of a force transmitting block, two step plate beams and two fixture blocks. The two-axis force sensor was designed using FEM (Finite Element Method), and manufactured using strain-gages. The characteristics test of the two-axis force sensor was carried out. as a test results, the interference error of the two-axis force sensor was less than 1.24%, the repeatability error of each sensor was less than 0.03%, and the non-linearity was less than 0.02%.

The Estimation of Fatigue Strength of Structure with Practical Dynamic Force by Inverse Problem and Lethargy Coefficient (구조물의 피로강도평가를 위한 역문제 및 무기력계수에 의한 실동하중해석)

  • 양성모;송준혁;강희용;노홍길
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.1
    • /
    • pp.106-113
    • /
    • 2004
  • Most of mechanical structures are composed of many substructures connected to one another by various types of mechanical joints. In automotive engineering, it is important to study these connected structures under various dynamic forces for the evaluations of fatigue life and stress concentration exactly. In this study, the dynamic response of vehicle structure to external forces is classified an inverse problem involving strains from the experiment and the analysis. The practical dynamic forces are determined by the combination of the analytical and experimental method with analyzed strain by quasi-static finite element analysis under unit force and with measured strain by a strain gage under driving load, respectively. In a stressed body, inter-molecular chemical bonds are failed beyond the certain magnitude. The failure of molecular structure in material is considered as a time process of which rate is determined by mechanical stress. That is, the failure of inter-molecular chemical bonds is the fatigue lift of material. This kinetic concept is expressed as lethargy coefficient. And S-N curve is obtained with the lethargy coefficient from quasi-static tensile test. Equivalent practical dynamic force is obtained from the identification of practical dynamic force for one loading point. Using the practical dynamic force and S-N curve, fatigue life of a window pillar is analyzed with FEM under the identified force by the procedure of above mentioned.

Modeling and Investigation of Multilayer Piezoelectric Transformer with a Central Hole for Heat Dissipation

  • Thang, Vo Viet;Kim, In-Sung;Jeong, Soon-Jong;Kim, Min-Soo;Song, Jae-Sung
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.5
    • /
    • pp.671-676
    • /
    • 2011
  • A multilayer square-type piezoelectric transformer with a hole at the center was investigated in this paper. Temperature distribution at the center was improved by using this construction, therefore increasing input voltage and output power. This model was simulated and investigated successfully by applying a finite element method (FEM) in ATILA software. An optimized structure was then fabricated, examined, and compared to the simulation results. Electrical characteristics, including output voltage and output power, were measured at different load resistances. The temperature distribution was also monitored using an infrared camera. The piezoelectric transformer operated at first radial vibration mode and a frequency area of 70 kHz. The 16 W output power was achieved in a three-layer transformer with 96% efficiency and $20^{\circ}C$ temperature rise from room temperature under 115 V driving voltage, 100 ${\Omega}$ matching load, $28{\times}28{\times}1.8mm$ size, and 2 mm hole diameter. With these square-type multilayer piezoelectric transformers, the temperature was concentrated around the hole and lower than in piezoelectric transformers without a hole.