Moon, Seongin;Han, Seongjin;Kang, To;Han, Soonwoo;Kim, Kyungmo;Yu, Yongkyun;Eom, Joseph
Nuclear Engineering and Technology
/
v.53
no.4
/
pp.1199-1209
/
2021
The detection of unexpected loose parts in the primary coolant system in a nuclear power plant remains an extremely important issue. It is essential to develop a methodology for the localization and mass estimation of loose parts owing to the high prediction error of conventional methods. An effective approach is presented for the localization and mass estimation of a loose part using machine-learning and deep-learning algorithms. First, a methodology was developed to estimate both the impact location and the mass of a loose part at the same times in a real structure in which geometric changes exist. Second, an impact database was constructed through a series of impact finite-element analyses (FEAs). Then, impact parameter prediction modes were generated for localization and mass estimation of a simulated metallic loose part using machine-learning algorithms (artificial neural network, Gaussian process, and support vector machine) and a deep-learning algorithm (convolutional neural network). The usefulness of the methodology was validated through blind tests, and the noise effect of the training data was also investigated. The high performance obtained in this study shows that the proposed methodology using an FEA-based database and deep learning is useful for localization and mass estimation of loose parts on site.
This paper utilizes LS-DYNA software to numerically investigate impact response and damage evaluation of fiber-reinforced polymer (FRP) bars-reinforced ultra-high-performance concrete (UHPC) composite beams (FRP-UHPC beams). Three-dimensional finite element (FE) models are established and calibrated by using literature-based static and impact tests, demonstrating high accuracy in simulating FRP-UHPC beams under impact loading. Parametric analyses explore the effects of impact mass, impactor height, FRP bar type and diameter, and clear span length on dynamic response and damage modes. Two failure modes emerge: tensile failure with bottom longitudinal reinforcement fracture and compression failure with local concrete compression near the impact region. Impact mass or height variation under the same impact energy significantly affects the first peak impact force, but minimally influences peak midspan displacement with a difference of no more than 5% and damage patterns. Increasing static flexural load-carrying capacity enhances FRP-UHPC beam impact resistance, reducing displacement deformation by up to 30%. Despite similar static load-carrying capacities, different FRP bars result in varied impact resistance. The paper proposes a damage assessment index based on impact energy, static load-carrying capacity, and clear span length, correlating well with beam end rotation. Their linearly-fitting coefficient was 1.285, 1.512, and 1.709 for the cases with CFRP, GFRP, and BFRP bars, respectively. This index establishes a foundation for an impact-resistant design method, including a simplified formula for peak midspan displacement assessment.
Journal of the Society of Naval Architects of Korea
/
v.57
no.2
/
pp.70-79
/
2020
The offshore installation units may be subjected to various accidental loads such as collision from supply vessels, impact from dropped objects, blast load from gas explosion and thermal load from fire. This paper deals with the design and strength evaluation method of the stiffened plate structures in response to a blast load caused by a gas explosion accident. It is a comprehensive review of various items used in actual project such as the size and type of the explosive loads, general design procedure/concept and analysis method. The structural analyses using simple analysis methods based on SDOF model and nonlinear finite element analysis are applied to the particular FPSO project. Also validation studies on the design guidance given by simple analysis method based on SDOF model have also considered several items such as backpressure effects, material behavior and duration time of the overpressure. A good correlation between the prediction made by simple analysis method based on SDOF model and nonlinear finite element analysis can be generally obtained up to the elastic limit.
The management of waste tire rubber has become a pressing environmental and health issue, requiring sustainable solutions to mitigate fire hazards and conserve natural resources. The performance of waste materials in structural components needs to be investigated to fabricate sustainable structures. This study aims to investigate the behavior of glass fiber reinforced polymer (GFRP) reinforced rubberized concrete (GRRC) compressive components under compressive loads. Nine GRRC circular compressive components, varying in longitudinal and transverse reinforcement ratios, were constructed. A 3D nonlinear finite element model (FEM) was proposed by means of the ABAQUS software to simulate the behavior of the GRRC compressive components. A comprehensive parametric analysis was conducted to assess the impact of different parameters on the performance of GRRC compressive components. The experimental findings demonstrated that reducing the spacing of GFRP stirrups enhanced the ductility of GRRC compressive components, while the addition of rubberized concrete further improved their ductility. Failure in GRRC compressive components occurred in a compressive columnar manner, characterized by vertical cracks and increased deformability. The finite element simulations closely matched the experimental results. The proposed empirical model, based on 600 test samples and considering the lateral confinement effect of FRP stirrups, demonstrated higher accuracy (R2 = 0.835, MSE = 171.296, MAE = 203.549, RMSE = 195.438) than previous models.
Journal of the Computational Structural Engineering Institute of Korea
/
v.30
no.5
/
pp.415-425
/
2017
Stresses occur in the spent nuclear fuel disposal canister due to the impulsive forces incurred in the accidental drop and impact event from the transportation vehicle onto the ground during deposition in the repository. In this paper, the comparative study of finite element analysis for stresses occurring in various models of the spent nuclear fuel disposal canister due to these impulsive forces is presented as one of design processes for the structural integrity of the canister. The main content of the study is about the design of the structurally safe canister through this comparative study. The impulsive forces applied to the canister subjected to the accidental drop and impact event from the transportation vehicle onto the ground in the repository are obtained using the commercial rigid body dynamic analysis computer code, RecurDyn. Stresses and deformations occurring due to these impulsive forces are obtained using the commercial finite element analysis computer code, NISA. The study for the structurally safe canister is carried out thru comparing and reviewing these values. The study results show that stresses become larger as the wall encompassing the spent nuclear fuel bundles inside the canister becomes thicker or as the diameter of the canister becomes larger. However, the impulsive force applied to the canister also becomes larger as the canister diameter becomes larger. Nonetheless, the deformation value per unit impulsive force decreases as the canister diameter increases. Therefore, conclusively the canister is structurally safe as the diameter increases.
Journal of the Computational Structural Engineering Institute of Korea
/
v.34
no.2
/
pp.85-91
/
2021
This paper introduces a modified Karagozian & Case concrete model (K&C model) for the numerical analysis of a steel-fiber-reinforced concrete (SFRC) structure subjected to projectile impact. The original K&C model was calibrated to consider the effects of steel fibers accurately by modifying the strength surfaces and input parameters. Single element tests were then conducted and compared with uniaxial and triaxial compressive data to verify the modified model. With the application of a dynamic increase factor, the finite element model of the SFRC structure subjected to projectile impact was constructed. Thereafter, the applicability of the modified material model was examined by comparisons with the experimental results.
Each aircraft have to be certified for a specified level of impact energy, for assuring the capability of a safe flight and landing after the impact against a bird at cruise speed. The aim of this research work was to define a scientific and methodological approach to the study of the birdstrike phenomenon against several windshield geometries. A series of numerical simulations have been performed using the explicit finite element solver code LS-Dyna, in order to estimate the windshield-surround structure capability to absorb the bird impact energy, safely and efficiently, according to EASA Certification Specifications 25.631 (2011). The research considers the results obtained about a parametric numerical analysis of a simplified, but realistic, square flat windshield model, as reported in the last work (Grimaldi et al. 2013), where this model was subjected to the impact of a 1.8 kg bird model at 155 m/s to estimate the sensitivity of the target geometry, the impact angle, and the plate curvature on the impact response of the windshield structure. Then on the basis of these results in this paper the topic is focused about the development of a numerical simulation on a complete aircraft windshield-surround model with an innovative configuration. Both simulations have used a FE-SPH coupled approach for the fluid-structure interaction. The main achievement of this research has been the collection of analysis and results obtained on both simplified realistic and complete model analysis, addressed to approach with gained confidence the birdstrike problem. Guidelines for setting up a certification test, together with a design proposal for a test article are an important result of such simulations.
In this study, experimental vibration tests are performed on a real full-scale railway steel plate girder bridge, which resides in open-space environments. Using experimental modal analysis techniques, the modal parameters of the railway steel plate girder bridge yielded by the modal testing of the impact hammer are compared and investigated with the natural frequencies and mode shapes obtained by finite element analysis. This work focuses on the application of model updating techniques to measured experimental data and output-only data from an analytical vibration study that takes into account various geometric and material properties of the bridge members. A finite element model of the railway bridge structure is used to verify the modal experimental results. It is subsequently updated using the corresponding modal identification technique. The basic database is provided to evaluate damage, which can be determined based on the changes in the element properties, resulting from the process of updating the finite element model benchmark and experimental data.
Min, Kyung Hwan;Lee, Jin Young;Kim, Mi Hye;Yoon, Young Soo
Journal of the Korea institute for structural maintenance and inspection
/
v.15
no.5
/
pp.169-177
/
2011
In this study, an impact resistance of concrete segmented composites adopted shell's structures which have the excellent impact resistance was assessed. In order to enhance the performances of concrete segmented composite, the bond strength of mortar between the concrete blocks should be improved. Hence, in this study polymer mortars were applied to increase the bond strength of mortar. From the results of bond tests, the 15% latex mortar was selected and static and low-velocity impact tests were carried out for the specimens applied the plain and latex mortar. The concrete segmented composites, of which the bond strength of mortar was enhanced, showed improved low-velocity impact resistances. A Nonlinear finite element analysis using the discrete crack model showed similar energy dissipating capacities to the impact test's results. Consequently, by improving the analysis models for segmented composites, the impact resistances for manifold variables can be predicted and assessed.
Impact analysis of TFT-LCD module is very complicated because the structure is assisted with thin, small and non-uniform geometry. Especially, finite element modeling is more difficult and need time-consuming efforts. In this study, we developed LCD Impact Analysis System (LIAS) for the purpose of reducing the analysis time without accuracy reduction. This system contains pre-meshing data, material database, shock condition, auto-reporting etc. PATRAN and DYNA3D is used for meshing and solving. Previously, we performed impact test and reviewed the accuracy of analysis results. Simply we can control design parameters, the procedure such as meshing, running and reporting which are partially auto-prepared. By adopting proposed system, it is expected to achieve efficient impact analysis of LCD module.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.