• Title/Summary/Keyword: finite element commercial package ADINA

Search Result 2, Processing Time 0.015 seconds

Numerical analysis of the 3D fluid-structure interaction in the sac of artificial heart (인공심장 sac내의 3차원 유체-구조물 상호작용에 대한 수치적 연구)

  • Park M. S.;Shim E. B.;Ko H. J.;Park C. Y.;Min B. G.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2000.05a
    • /
    • pp.27-32
    • /
    • 2000
  • In this study, the three-dimensional blood flow within the sac of KTAH(Korean artificial heart) is simulated using fluid-structure interaction model. The numerical method employed in this study is the finite element commercial package ADINA. The thrombus formation is one of the most critical problems in KTAH. High fluid shear stress or stagnated flow are believed to be the main causes of these disastrous phenomenon. We solved the fluid-structure interaction between the 3D blood flow in the sac and the surrounding sac material. The sac material is assumed as linear elastic material and the blood as incompressible viscous fluid. Numerical solutions show that high shear stress region and stagnated flow are found near the upper part of the sac and near the comer of the outlet during diastole stage.

  • PDF

Numerical Analysis of the Flow in a Compliant Tube Considering Fluid-wall Interaction (벽-유체의 상호작용을 고려한 유연관 내부 유동의 수치적 연구)

  • 심은보
    • Journal of Biomedical Engineering Research
    • /
    • v.21 no.4
    • /
    • pp.391-401
    • /
    • 2000
  • Flow through compliant tubes with linear taper in wall thickness is numerically simulated by finite element analysis. For verification of the numerical method, flow through a compliant stenotic vessel is simulated and the results are compared to the existing experimental data. Steady two-dimensional flow in a collapsible channel with initial tension is also simulated and the results are compared with numerical solutions from the literature. Computational results show that as cross-sectional area decreases with the reduction in downstream pressure, flow rate increases and reaches the maximum when the speed index (mean velocity divided by wave speed) is near the unity at the point of minimum cross-section area, indicating the flow limitation or choking (flow speed equals wave speed) in one-dimensional studies. for further reductions in downstream pressure, flow rate decreases. The flow limitation or choking consist of the main reasons of waterfall effect which occurs in the airways, capillaries of lung, and other veins. Cross-sectional narrowing is significant but localized. When the ratio of downstream-to-upstream wall thickness is 2, the area throat is located near the downstream end. As this ratio is increased to 3, the constriction moves to the upstream end of the tube.

  • PDF