• Title/Summary/Keyword: finite element beam model

Search Result 938, Processing Time 0.03 seconds

Use of Super Elements for Efficient Analysis of Flat Plate Structures (플랫플레이트 구조물의 효율적인 해석을 위한 수퍼요소의 활용)

  • 김현수;이승재;이동근
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.4
    • /
    • pp.439-450
    • /
    • 2003
  • Flat plate system has been adopted in many buildings constructed recently because of the advantage of reduced floor heights to meet the economical and architectural demands. Structural engineers commonly use the effective beam width model(EBWM) in practical engineering for the analysis of flat plate structures. However, in many cases, when it is difficult to use the EBWM, it is necessary to use a refined finite element model for an accurate analysis. But it would take significant amount of computational time and memory if the entire building structure was subdivided with finer meshes. An efficient analytical method is proposed in this study to obtain accurate results in significantly reduced computational time. The proposed method employs super elements developed using the matrix condensation technique and fictitious beams are used in the development of super elements to enforce the compatibility at the interfaces of super elements. The stiffness degradation of flat plate system considered in the EBWM was taken into account by reducing the elastic modulus of floor slabs in this study. Static and dynamic analyses of example structures were performed and the efficiency and accuracy of the proposed method were verified by comparing the results with those of the refined finite element model and the EBWM.

The Effect of Internal Flow on Vortex-Induced Vibration of Marine Riser (Riser의 내부유체 흐름이 소용돌이로 인한 Riser 동적반응에 미치는 영향)

  • Hong, Nam-Seeg;Hsiang Wang
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.7 no.2
    • /
    • pp.198-208
    • /
    • 1995
  • Combining Iwan-Blevin's model into the approximated form of the nonlinear model derived for the dynamic analysis of the riser system with the inclusion of internal flow, current-vortex model is developed to investigate the effect of internal flow on vortex-induced vibration due to inline current The riser system includes a steadly flow inside the pipe which is modeled as an extensible or inextensible tubular beam. Galerkin's finite element approximation are implemented to derive the matrix equation of equilibrium for the finite element system. The investigations of the effect of internal flow on vibration due to inline current are performed according to the change of various parameters such as top tension, infernal flow velocity. current velocity, and so on. It is found that the effect of internal flow on vibration due to vortex shedding can be controlled by the increase of top tension. However, careful consideration has to be given, in design point in order to avoid the resonance band occurding near vortex shedding frequency, particularly for the long riser.

  • PDF

Numerical analysis of channel connectors under fire and a comparison of performance with different types of shear connectors subjected to fire

  • Shahabi, S.E.M.;Ramli Sulong, N.H.;Shariati, M.;Mohammadhassani, M.;Shah, S.N.R.
    • Steel and Composite Structures
    • /
    • v.20 no.3
    • /
    • pp.651-669
    • /
    • 2016
  • The behavior of shear connectors plays a significant role in maintaining the required strength of a composite beam in normal and hazardous conditions. Various types of shear connectors are available and being utilized in the construction industry according to their use. Channel connectors are a suitable replacement for conventional shear connectors. These connectors have been tested under different types of loading at ambient temperature; however, the behavior of these connectors at elevated temperatures has not been studied. This investigation proposes a numerical analysis approach to estimate the behavior of channel connectors under fire and compare it with the numerical analysis performed in headed stud and Perfobond shear connectors subjected to fire. This paper first reviews the mechanism of various types of shear connectors and then proposes a non-linear thermo-mechanical finite element (FE) model of channel shear connectors embedded in high-strength concrete (HSC) subjected to fire. Initially, an accurate nonlinear FE model of the specimens tested at ambient temperature was developed to investigate the strength of the channel-type connectors embedded in an HSC slab. The outcomes were verified with the experimental study performed on the testing of channel connectors at ambient temperature by Shariati et al. (2012). The FE model at ambient temperature was extended to identify the behavior of channel connectors subjected to fire. A comparative study is performed to evaluate the performance of channel connectors against headed stud and Perfobond shear connectors. The channel connectors were found to be a more economical and easy-to-apply alternative to conventional shear connectors.

Comparison between Numerical Results of 1D Beam and 2D Plane Stress Finite Element Analyses Considering Aspect Ratio of Cantilever Beams (캔틸레버보의 형상비에 따른 1차원 보와 2차원 평면응력 유한요소해석 결과의 비교)

  • Kang, Yoo-Jin;Sim, Ji-Soo;Cho, Hae-Sung;Shin, Sang-Joon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.5
    • /
    • pp.459-465
    • /
    • 2015
  • There exist different kinds of aircrafts, such as conventional airplane, rotorcraft, fighter, and unmanned aerial vehicle. Their shape and feature are dependent upon their own assigned mission. One of the fundamental analyses performed during the aircraft design is the structural analysis. It becomes more complicated and requires severe computations because of the recent complex trends in aircraft structure. In order for efficiency in the structural analysis, a simplified approach, such as equivalent beam or plate model, is preferred. However, it is not clear which analysis will be appropriate to analyze the realistic configuration, such as an aircraft wing, i.e., between an equivalent beam and plate analysis. It is necessary to assess the limitation for both the one-dimensional beam analysis and the two-dimensional plate theory. Thus, in this paper, the static structural analysis results obtained by EDISON solvers were compared with the three-dimensional results obtained from MSC NASTRAN. Before that, EDISON program was verified by comparing the results with those from MSC NASTRAN program and other analytic solutions.

Influence of opening location, shape, and size on the behavior of steel beam columns

  • Mona M. Fawzy;Fattouh M. F. Shaker;Alia M. Ayyash;Mohamed M. Salem
    • Steel and Composite Structures
    • /
    • v.50 no.1
    • /
    • pp.1-13
    • /
    • 2024
  • The objective of this research is to study experimentally and numerically the behavior of steel beam columns with openings. Although the presence of openings in the beam columns is inevitable, finding ways to maintain strength is crucial. The studied parameters are opening shape, the ratio between opening height to specimen height, the percentage of opening location from support to beam column length, and web slenderness. Experimental tests are conducted including twelve specimens to study the effect of these parameters and record failure load, load deflection curve, and stress strain curve. Two failure modes are observed: local and flexural buckling. Interaction curves plotted from finite element model analysis are also used to expand the parametric study. Changing the location of the opening can decrease failure load by up to 7% and 60% in both normal and moment ratios respectively. Increasing the opening dimension can lead to a drop in the axial ratio by up to 29% and in the moment ratio by up to 74%. The weakest beam column behavior is noticed in specimens with rectangular openings which results from uneven and concentrated stresses around the opening. The main results of this research illustrate that the best location for opening is at 40% - 50% from beam column support. Also, it is advisable to use circular openings instead of rectangular openings in specimens having slender webs because moment ratios are raised by 85% accompanied by a rise in normal ratios by 9%.

Study of the dynamic behavior of porous functionally graded suspension structural systems using finite elements method

  • Ayman E., Nabawy;Ayman M.M., Abdelhaleem;Soliman. S., Alieldin;Alaa A., Abdelrahman
    • Steel and Composite Structures
    • /
    • v.45 no.5
    • /
    • pp.697-713
    • /
    • 2022
  • In the context of the finite elements method, the dynamic behavior of porous functionally graded double wishbone vehicle suspension structural system incorporating joints flexibility constraints under road bump excitation is studied and analyzed. The functionally graded material properties distribution through the thickness direction is simulated by the power law including the porosity effect. To explore the porosity effects, both classical and adopted porosity models are considered based on even porosity distribution pattern. The dynamic equations of motion are derived based on the Hamiltonian principle. Closed forms of the inertia and material stiffness components are derived. Based on the plane frame isoparametric Timoshenko beam element, the dynamic finite elements equations are developed incorporating joint flexibilities constraints. The Newmark's implicit direct integration methodology is utilized to obtain the transient vibration time response under road bump excitation. The presented procedure is validated by comparing the computational model results with the available numerical solutions and an excellent agreement is observed. Obtained results show that the decrease of porosity percentage and material graduation tends to decrease the deflection as well as the resulting stresses of the control arms thus improving the dynamic performance and increasing the service lifetime of the control arms.

Experimental Study of Steel Transmission Tower using Partially Scaled Model (송전철탑 부분축소모형의 실험적 연구)

  • Kim, Jong-Min;Kim, Seung-Jun;Park, Jong-Sup;Kang, Young-Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.4
    • /
    • pp.335-344
    • /
    • 2010
  • This paper presents both of an investigation on the ultimate responses and a verification study on the structural methodology using beam-truss element of steel transmission towers using experimental study. The partially scaled tower which verified with analytical model was fabricated and the horizontal load was applied up to failure in the laboratory. The structural methodology for finite element analyses was verified against experimental results and both the ultimate load capacity and collapse mechanism were shown in the test to give sufficiently accurate results with those of analytical study. It was shown as well that the ultimate failure is primarily attributed to instability of the main posts in the leg parts.

Distributed plasticity approach for the nonlinear structural assessment of offshore wind turbine

  • Tran, Thanh-Tuan;Hussan, Mosaruf;Kim, Dookie;Nguyen, Phu-Cuong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.743-754
    • /
    • 2020
  • This study provides an insight of the nonlinear behavior of the Offshore Wind Turbine (OWT) structure using the distributed plasticity approach. The fiber section beam-column element is applied to construct the finite element model. The accuracy of the proposed model is verified using linear analysis via the comparison of the dynamic characteristics. For collapse risk assessment of OWT, the nonlinear effects considering the earthquake Incident Angle (IA) have been evaluated first. Then, the Incremental Dynamic Analysis (IDA) has been executed using a set of 20 near-fault records. Lastly, fragility curves are developed to evaluate the vulnerability of structures for different limit states. Attained results justify the accuracy of the proposed approach for the structural response against the ground motions and other environmental loads. It indicates that effects of static wind and wave loads along with the earthquake loads should be considered during the risk assessment of the OWT structure.

Design of End Diaphragms in PSC Box Girder Bridges Using a Strut-and-Tie Model (스트럿-타이 모델을 이용한 PSC 박스거더 교량의 End Diaphragm의 설계 연구)

  • 이창훈;윤영수;이만섭;김병석
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.961-966
    • /
    • 2003
  • In recent, the design of diaphragm which is representative disturbed region in PSC box girder bridge have been performed according to the empirical method or beam theory. But, these methods couldn't be described the behavior of the end diaphragm, and placed reinforcements accurately. As the compressive stress transferred by the web concentrated on the lower parts of diaphragm, it was demonstrated that the basic assumption of 2-D strut-and-tie model for the diaphragm that the compressive stress acts on the upper parts of the diaphragm is wrong. Meanwhile, in this research, after analyzing the variables of end diaphragm, the 2-D strut-and-tie models appropriate to each cases are proposed. And, the problems of 2-D strut-and-tie model were analyzed, so 3-D strut-and-tie model is proposed as well. There is no codes which include the demonstration of safety of 3-D strut-and-tie model. Hence, for nodes, the stresses at the elements which included the singular node in strut-and-tie model were investigated using the finite element analysis. And, the stress states of strut has one direction, so effective stresses were considered at the stage, dimensioning of the model. From the results, 3-D strut-and-tie model could predict the behavior of end diaphragm accurately, and design of reinforcement could be performed economically.

  • PDF

Thermal Stress Analysis of Composite Beam through Dimension Reduction and Recovery Relation (차원축소와 복원관계를 통한 복합재료 보의 열응력 해석)

  • Jang, Jun Hwan;Ahn, Sang Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.5
    • /
    • pp.381-387
    • /
    • 2017
  • Fiber-reinforced composites not only have a direction of thermal expansion coefficient, but also inevitably suffer thermal stress effects due to the difference between the manufacturing process temperature and the actual use temperature. The damage caused by thermal stress is more prominent in the case of thick composite laminates, which are increasingly applied in the aerospace industry, and have a great influence on the mechanical function and fracture strength of the laminates. In this study, the dimensional reduction and thermal stress recovery theory of composite beam structure having high slenderness ratio is introduced and show the efficiency and accuracy of the thermal stress comparison results between the 3-D finite element model and the dimension reduction beam model. Efficient recovery analysis study will be introduced by reconstructing the thermal stress of the composite beam section applied to the thermal environment by constructing the dimensional reduction modeling and recovery relations.