• Title/Summary/Keyword: finite dimensional continuous

Search Result 116, Processing Time 0.026 seconds

Elasticity solution and free vibrations analysis of laminated anisotropic cylindrical shells

  • Shakeri, M.;Eslami, M.R.;Yas, M.H.
    • Structural Engineering and Mechanics
    • /
    • v.7 no.2
    • /
    • pp.181-202
    • /
    • 1999
  • Dynamic response of axisymmetric arbitrary laminated composite cylindrical shell of finite length, using three-dimensional elasticity equations are studied. The shell is simply supported at both ends. The highly coupled partial differential equations are reduced to ordinary differential equations (ODE) with variable coefficients by means of trigonometric function expansion in axial direction. For cylindrical shell under dynamic load, the resulting differential equations are solved by Galerkin finite element method, In this solution, the continuity conditions between any two layer is satisfied. It is found that the difference between elasticity solution (ES) and higher order shear deformation theory (HSD) become higher for a symmetric laminations than their unsymmetric counterpart. That is due to the effect of bending-streching coupling. It is also found that due to the discontinuity of inplane stresses at the interface of the laminate, the slope of transverse normal and shear stresses aren't continuous across the interface. For free vibration analysis, through dividing each layer into thin laminas, the variable coefficients in ODE become constants and the resulting equations can be solved exactly. It is shown that the natural frequency of symmetric angle-ply are generally higher than their antisymmetric counterpart. Also the results are in good agreement with similar results found in literatures.

Uplift capacity of horizontal anchor plate embedded near to the cohesionless slope by limit analysis

  • Bhattacharya, Paramita;Sahoo, Sagarika
    • Geomechanics and Engineering
    • /
    • v.13 no.4
    • /
    • pp.701-714
    • /
    • 2017
  • The effect of nearby cohesionless sloping ground on the uplift capacity of horizontal strip plate anchor embedded in sand deposit with horizontal ground surface has been studied numerically. The numerical analysis has been carried out by using the lower bound theorem of limit analysis with finite elements and linear optimization. The results have been presented in the form of non-dimensional uplift capacity factor of anchor plate by changing its distance from the slope crest for different slope angles, embedment ratios and angles of soil internal friction. It has been found that the decrease in horizontal distance between the edge of the anchor plate and the slope crest causes a continuous decrease in uplift capacity of anchor plate. The optimum distance is that distance between slope crest and anchor plate below which uplift capacity of an anchor plate has been found to decrease with a decrease in normalized crest distance from the anchor plate in presence of nearby sloping ground. The normalized optimum distance between the slope crest and the anchor plate has been found to increase with an increase in slope angle, embedment ratio and soil internal friction angle.

A Study on Interaction of Estuarial Water and Sediment Transport (하구수와 표사의 상호작용에 관한 연구)

  • Lee, H.;Lee, J.W.
    • Journal of Korean Port Research
    • /
    • v.14 no.4
    • /
    • pp.451-461
    • /
    • 2000
  • The design and maintenance of navigation channel and water facilities of an harbor which is located at the mouth of river or at the estuary area are difficult due to the complexity of estuarial water and sediment circulation. Effects of deepening navigable waterways, of changing coastline configurations, or of discharging dredged material to the open sea are necessary to be investigated and predicted in terms of water quality and possible physical changes to the coastal environment. A borad analysis of the transport mechanism in the estuary area was made in terms of sediment property, falling velocity, concentration and flow characteristics. In order to simulate the transport processes, a two-dimensional finite element model is developed, which includes erosion, transport and deposition mechanism of suspended sediments. Galerkin’s weighted residual method is used to solve the transient convection-diffusion equation. The fluid domain is subdivided into a series of triangular elements in which a quadratic approximation is made for suspended sediment concentration. Model could deal with a continuous aggregation by stipulating the settling velocity of the flocs in each element. The model provides suspended sediment concentration, bed shear stress, erosion versus deposition rate and bed profile at the given time step.

  • PDF

A comparison study of Bayesian high-dimensional linear regression models (베이지안 고차원 선형 회귀분석에서의 비교연구)

  • Shin, Ju-Won;Lee, Kyoungjae
    • The Korean Journal of Applied Statistics
    • /
    • v.34 no.3
    • /
    • pp.491-505
    • /
    • 2021
  • We consider linear regression models in high-dimensional settings (p ≫ n) and compare various classes of priors. The spike and slab prior is one of the most widely used priors for Bayesian regression models, but its model space is vast, resulting in a bad performance in finite samples. As an alternative, various continuous shrinkage priors, including the horseshoe prior and its variants, have been proposed. Although each of the above priors has been investigated separately, exhaustive comparative studies of their performance have been conducted very rarely. In this study, we compare the spike and slab prior, the horseshoe prior and its variants in various simulation settings. The performance of each method is demonstrated in terms of the regression coefficient estimation and variable selection. Finally, some remarks and suggestions are given based on comprehensive simulation studies.

Effective Analysis of Incremental Forming Process using the Automatic Expansion of Domain Scheme (자동 영역확장법을 이용한 점진 성형공정의 효율적 해석)

  • Lee K.H.;Lee S.R.;Hong J.T.;Yang D.Y.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.812-815
    • /
    • 2005
  • The incremental forming process employs several tens or hundreds of continuous local strokes, so the entire process is difficult to analyze due to much computation time and large computer memory. The objective of this work is to propose a new numerical scheme of the finite element method, automatic expansion of domain (AED), and to reduce computation time and computer memory. In the AED scheme, an effective analysis domain in each local forming step is defined and then the domain is automatically expanded in accordance with the repeated process. In order to verify the validity of the criterion for the AED scheme and the applicability of the AED scheme, two-dimensional incremental plane-strain forging process is first analyzed using the proposed scheme with various criteria and full domain. In addition, three-dimensional incremental radial forging process is analyzed to verify the applicability of the proposed scheme to a practical incremental forging process.

  • PDF

NUMERICAL METHOD FOR TWO-PHASE FLOW ANALYSIS USING SIMPLE-ALGORITHM ON AN UNSTRUCTURED MESH (비정렬격자 SIMPLE 알고리즘기반 이상유동 수치해석 기법)

  • Kim, Jong-Tae;Park, Ik-Kyu;Cho, Hyung-Kyu;Kim, Kyung Doo;Jeong, Jae-Jun
    • Journal of computational fluids engineering
    • /
    • v.13 no.4
    • /
    • pp.86-95
    • /
    • 2008
  • For analyses of multi-phase flows in a water-cooled nuclear power plant, a three-dimensional SIMPLE-algorithm based hydrodynamic solver CUPID-S has been developed. As governing equations, it adopts a two-fluid three-field model for the two-phase flows. The three fields represent a continuous liquid, a dispersed droplets, and a vapour field. The governing equations are discretized by a finite volume method on an unstructured grid to handle the geometrical complexity of the nuclear reactors. The phasic momentum equations are coupled and solved with a sparse block Gauss-Seidel matrix solver to increase a numerical stability. The pressure correction equation derived by summing the phasic volume fraction equations is applied on the unstructured mesh in the context of a cell-centered co-located scheme. This paper presents the numerical method and the preliminary results of the calculations.

Coupled Analysis of Continuous Casting by FEM (유한요소법을 이용한 연속주조공정의 연계해석)

  • Moon C. H.;Hwang S. M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.181-185
    • /
    • 2001
  • Three-dimensional finite-element-based numerical model of turbulent flow, heat transfer, macroscopic solidification and inclusion trajectory in a continuos steel slab caster was developed Turbulence was incorporated using the Improved Low-Re turbulence model with positive preserving approach. The mushy region was modeled as the porous media with average effective viscosity. A series of simulations was carried out to investigate the effects of the casting speed, the slab size, the delivered superheat the immersion depth of the SEN on the transport phenomena. In the absence of any known experimental data related to velocity profiles, the numerical predictions of the solidified profile on a caster was compared with breakouts data and a good agreement was found.

  • PDF

OPTIMALITY CONDITIONS AND DUALITY MODELS FOR MINMAX FRACTIONAL OPTIMAL CONTROL PROBLEMS CONTAINING ARBITRARY NORMS

  • G. J., Zalmai
    • Journal of the Korean Mathematical Society
    • /
    • v.41 no.5
    • /
    • pp.821-864
    • /
    • 2004
  • Both parametric and parameter-free necessary and sufficient optimality conditions are established for a class of nondiffer-entiable nonconvex optimal control problems with generalized fractional objective functions, linear dynamics, and nonlinear inequality constraints on both the state and control variables. Based on these optimality results, ten Wolfe-type parametric and parameter-free duality models are formulated and weak, strong, and strict converse duality theorems are proved. These duality results contain, as special cases, similar results for minmax fractional optimal control problems involving square roots of positive semi definite quadratic forms, and for optimal control problems with fractional, discrete max, and conventional objective functions, which are particular cases of the main problem considered in this paper. The duality models presented here contain various extensions of a number of existing duality formulations for convex control problems, and subsume continuous-time generalizations of a great variety of similar dual problems investigated previously in the area of finite-dimensional nonlinear programming.

The Behavior of Prestressed Composite Box Girder (프리스트레스트 합성상자형교의 거동 특성)

  • 김주형;한택희;김종헌;강영종
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.591-596
    • /
    • 2001
  • In case of continuous steel box-girder bridges, the magnitude of the longitudinal tensile stress on concrete in internal support is larger than the tensile strength of concrete. In this paper, the parametric study was performed to present the effective magnitude of the longitudinal prestress for reducing the longitudinal tensile stress to decrease under the tensile strength of concrete. The parametric study is conducted with changing the steel box-girder section and the span length of bridge. Three dimensional finite element analyses are conducted with ABAQUS program. The behavior of the steel box-girder bridge with prestress is investigated through experimental works on a analogous steel box-girder bridge model, and their results are compared with those of analytical studies.

  • PDF

NUMERICAL METHOD FOR TWO-PHASE FLOW ANALYSIS USING SIMPLE-ALGORITHM ON AN UNSTRUCTURED MESH (비정렬격자 SIMPLE 알고리즘기반 이상유동 수치해석 기법)

  • Kim, Jong-tae;Park, Ik-Kyu;Cho, Hyung-Kyu;Kim, Kyung-Doo;Jeong, Jae-Jun
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.71-78
    • /
    • 2008
  • For analyses of multi-phase flows in a water-cooled nuclear power plant, a three-dimensional SIMPLE-algorithm based hydrodynamic solver CUPID-S has been developed. As governing equations, it adopts a two-fluid three-field model for the two-phase flows. The three fields represent a continuous liquid, a dispersed droplets, and a vapour field. The governing equations are discretized by a finite volume method on an unstructured grid to handle the geometrical complexity of the nuclear reactors. The phasic momentum equations are coupled and solved with a sparse block Gauss-Seidel matrix solver to increase a numerical stability. The pressure correction equation derived by summing the phasic volume fraction equations is applied on the unstructured mesh in the context of a cell-centered co-located scheme. This paper presents the numerical method and the preliminary results of the calculations.

  • PDF