• Title/Summary/Keyword: finite base

Search Result 682, Processing Time 0.04 seconds

A Study on the Identification of the joint's Stiffness of a Stucture by Sensitive Analysis Method (감도해석법에 의한 구조물의 결합부 강성 산출에 관한 연구)

  • 박석주;왕지석
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.16 no.5
    • /
    • pp.60-66
    • /
    • 1992
  • In most cases a structure consists of the assembly of some substructures, we assemble them with various joints, and the structure is fixed to a foundation through mounts. In case of the structure with rigid joints like welding, the Finite Element Mothod could be easily used to analyize the structure's characteristics, but in case of the structure with elastic joints like bolts or rivets, it might be difficult to analyize it by taking account of joint's rigidities, with the conventional method. This paper proposes the method to identify the joint rigidities by the Sensitive Analysis Method and the Optimization Techniques. And the proposed method applied to identify the rigidities of 4 bolts to combine 2 plates(500mm long, 100mm wide, 3.15mm thich). The analized results were well coincident with the experimental results. To confirm the reliability 0 the rigidities identified, another trial was done for the stucture to combine other 2 plates with same joints. The results were good too. This paper is proposin the identifying method of the joint rigidity of a structure, and it could be used for the data base of the joint rigidity and for the guidance to select joint stiffness.

  • PDF

The Residual Stresses Evaluation of Butt Welded Zone on the Joint Shape in the Titanium Plate (티타늄재 맞대기 용접부의 개선형상에 따른 잔류응력 평가)

  • 성백섭;김일수;김인주;차용훈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.290-294
    • /
    • 1997
  • In this study, the welded residual stresses test was carried out with pure titanium and TIG welded material using in chemical plants an airplane frames etc.. The relationship between process parameters and residual stresses is complex since a number of factors are involved. Extensive studies have been carried out to determine the effects of various process parameters on residual stress. The result of micro-hardness about butt welded spacemen was measured of low hardness value in the melting metal zone. The residual stress of welded zone on the Titanium plate by the sectioning method and finite element method was high measured in the spacemen of high current and voltage. Also, compressive residual stress in the range of distance about 15∼20mm from the middle of the deposited metal area is very change. The result of impact test about butt welded spacemen of pure titanium plate was measured of very difference in the welded bead, heat affect zone and base metal, and be measured of high impact value in the heat affect zone. The measure result of welded residual stresses about pure titanium is high measured hen nominal steel plate. The V-Type butt welded spacemen, that of the measurement result on the welded residual stress is high measure then X-Type butt welded spacemen.

  • PDF

A Study on Measurement of Internal Defects of Pressure Vessel by Digital Shearography and Finite Element Method (전자 전단 간섭법과 유한요소법을 이용한 압력용기의 내부결함 측정에 관한 연구)

  • 강영준;강형수;채희창
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.2
    • /
    • pp.29-37
    • /
    • 2001
  • The application of laser in pipelines was started from the base of using laser in nuclear facilities industries and power plants. Because laser can be delivered to a remote area without any difficulties, the application of laser in many industries can solve many difficulties from limitation of access in danger area and reduced the risks of workers. Therefore, we developed a new experimental technique to measure internal defects of pressure vessels with a combination of shearog-raphy and image processing technique. Conventional NDT methods have been taken relatively much time, money and manpower because of performing as the method of contact with objects to be inspected. But digital shearography is laser-based optical method which allows full-field observation of surface displacement derivatives. This method has many advantages in practical use, such as low sensitivity to environmental noise, simple optical configuration and real time mea-surement. In this paper, we find the optimum shearing magnitude with EFM and experiment and measured internal crack length of the pressure vessels at a real time and estimated the error of the results.

  • PDF

A Stochastic Control for Nonlinear Systems under Random Disturbance Based on a Fluid Motion (유체운동에 의한 불규칙 가진을 받는 비선형계의 확률제어)

  • Oh, Soo-Young;Kim, Yong-Kwan;Cho, Lae-Kyoung;Choi, Young-Seob;Heo, Hoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.892-896
    • /
    • 2001
  • Investigation is performed on the stability of nonlinear system under turbulent fluid motion modelled as white noise random process, which is a preliminary result in the course of research on the characteristic and nonlinear control of the stochastic system. Adopted physical model is beam-type structure with tip-mass and main base mass. The governing equation is derived via F-P-K approach in stochastic sense. By means of Gaussian Closure method infinite dynamic moment equations due to system nonlinearity is closed to finite one. At the best of authors' knowledge, it is the first trial to design nonlinear controller by using of sliding mode technique in stochastic domain and control performance and effect in stochastic domain is studied.

  • PDF

Dynamic response of layered hyperbolic cooling tower considering the effects of support inclinations

  • Asadzadeh, Esmaeil;Alam, Mehtab;Asadzadeh, Sahebali
    • Structural Engineering and Mechanics
    • /
    • v.50 no.6
    • /
    • pp.797-816
    • /
    • 2014
  • Cooling tower is analyzed as an assembly of layered nonlinear shell elements. Geometric representation of the shell is enabled through layered nonlinear shell elements to define the different layers of reinforcements and concrete by considering the material nonlinearity of each layer for the cooling tower shell. Modal analysis using Ritz vector analysis and nonlinear time history analysis by direct integration method have been carried out to study the effects of the inclination of the supporting columns of the cooling tower shell on its dynamic characteristics. The cooling tower is supported by I-type columns and ${\Lambda}$-type columns supports having the different inclination angles. Relevant comparisons of the dynamic response of the structural system at the base level (at the junction of the column and shell), throat level and at the top of the tower have been made. Dynamic response of the cooling tower is found to be significantly sensitive to the change of the inclination of the supporting columns. It is also found that the stiffness of the structure system increases with increase in inclination angle of the supporting columns, resulting in decrease of the period of the structural system. The participation of the stiffness of the tower in structural response of the cooling tower is fund to be dependent of the change in the inclination angle and even in the types of the supporting columns.

Development of the Practical and Adaptive Die of Piloting Stripper Type for Sheet Metal (part 1)

  • Sim, Sung-Bo;Sung, Yul-Min;Song, Young-Seok;Park, Hae-Kyoung
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.10a
    • /
    • pp.109-113
    • /
    • 2000
  • The piercing and blanking of thin sheet metal working with a pilot punch guide is specified division in press die design and making. In order to prevent the detects, the optimum design of the production part, strip process layout, die design, die making and try out etc. are necessary the analysis of effective factors. For example, theory and practice of metal shearing process and its phenomena, die structure, machine tool working for die making, die materials and its heat treatment, metal working in industrial and its know how etc. In this study, we analyzed whole of data base, theoretical back ground of metal working process, and then performed the progressive die tryout with the screw press. This study regards to the aim of small quantity of production part's press working by piloting for accurate guide of actual sheet metal strip. Part 1 of this study reveals with production part and strip process layout for the die design.

  • PDF

FEA for Fabrication Process of PZT Preform Using CIM (CIM을 이용한 PZT 프리폼의 제조공정에 대한 유한요소해석)

  • Shin, Ho-Yong;Kim, Jong-Ho;Jang, Jong-Soo;Baek, Seung-Min;Im, Jong-In
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.6
    • /
    • pp.700-707
    • /
    • 2009
  • This paper described finite element analysis (FEA) for fabrication processes of PZT perform using ceramic injection molding (CIM). The viscosity and the PVT characteristics of the manufactured PZT feedstock were measured. The filling patterns, pressure and temperature distributions of the preform were analyzed with TIMON 3D packages during CIM process. The geometrical variables such as gate type, location, and base thickness of the preform were considered. Also the fabrication conditions of the preform were optimized during the entire CIM process. Based on the simulated results, the various good perform was easily fabricated with the CIM process.

Analysis on the dynamic characteristics of RAC frame structures

  • Wang, Changqing;Xiao, Jianzhuang
    • Structural Engineering and Mechanics
    • /
    • v.64 no.4
    • /
    • pp.461-472
    • /
    • 2017
  • The dynamic tests of recycled aggregate concrete (RAC) are carried out, the rate-dependent mechanical models of RAC are proposed. The dynamic mechanical behaviors of RAC frame structure are investigated by adopting the numerical simulation method of the finite element. It is indicated that the lateral stiffness and the hysteresis loops of RAC frame structure obtained from the numerical simulation agree well with the test results, more so for the numerical simulation which is considered the strain rate effect than for the numerical simulation with strain rate excluded. The natural vibration frequency and the lateral stiffness increase with the increase of the strain rate. The dynamic model of the lateral stiffness is proposed, which is reasonably applied to describe the effect of the strain rate on the lateral stiffness of RAC frame structure. The effect of the strain rate on the structural deformation and capacity of RAC is analyzed. The analyses show that the inter-story drift decreases with the increase of the strain rate. However, with the increasing strain rate, the structural capacity increases. The dynamic models of the base shear coefficient and the overturning moment of RAC frame structure are developed. The dynamic models are important and can be used to evaluate the strength deterioration of RAC structure under dynamic loading.

Structural Analysis of Gasket and GDL for Enhanced Performance of PEMFC (고분자 전해질 연료전지 가스켓 및 GDL의 구조 해석)

  • Yoon, Jin-Young;Park, Jungsun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.7
    • /
    • pp.642-650
    • /
    • 2008
  • In this paper, structural behavior of Gasket and GDL of a PEMFC stack is studied to improve the performance and to secure the safety. In the Gasket analysis Mooney-Rivlin strain energy function is used to consider hyperelasticity of load and displacement. The material properties is determined by testing specimens of the gasket at uni-axial and equi-biaxial mode and compared with finite element analysis results. By measuring a thickness change, the material property of GDL is determined. The pressure drop of a unit cell is measured along the channel for the clamping force. A cross sectional change of channel base on the experimental data is obtained experimentally and compare with FEM analysis results.

A Blackboard-Based Scheduling Expert System (흑판모델을 이용한 일정계획 전문가 시스템)

  • Park, Ji-Hyeong;Gang, Mu-Jin;Lee, Gyo-Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.1
    • /
    • pp.14-23
    • /
    • 1996
  • Scheduling jobs effectively under consideration of actual loads on machines is one of the most complicated tasks in production control. The complexity of the finite capacity scheduling often makes the conventional methods of industrial engineering fail. As an alternative, Knowledge-based approaches to job-shop scheduling have been evolved recently. This paper presents a blackboard- based scheduling expert system which combines knowledge-based scheduling with interactive scheduling. It is shown to be possible to generate the feasible schedule within a reasonable time. Flexible reaction management is also possible while keeping the changes in the generated schedule to the minimal and adjusting the schedule to tardy operations or working environmental changes. The system is equipped with a rule base with heuristics for handling conflicted event. A case study applying the implemented system is described.