• Title/Summary/Keyword: finite base

Search Result 681, Processing Time 0.036 seconds

Finite Element Analysis and Geometric Parameter Optimization for BMT Driving Assembly (BMT 구동장치의 유한요소해석 및 형상변수 최적화)

  • Park, Young-Whan;Kwak, Jae-Seob;Jiating, Yan
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.2
    • /
    • pp.178-183
    • /
    • 2010
  • Base-mounted type(BMT) driving assembly in CNC machine tools is an indispensable part to improve productivity by reducing tool changeover time and to meet the ever-increasing demand of precision machine tools. This study aimed to perform finite element analysis and geometric parameter optimization to improve the efficiency of BMT driving assembly. First, simulations for three-dimensional structural and vibration analysis were performed using ANSYS/Workbench on the initial geometric models of BMT driving assembly. After analyzing stress and deformation concentration zones, several new geometrical models were designed and evaluated by design of experiments and ANSYS/DesignXplorer. Through a series of analysis-evaluation-modification cycles, it was seen that designed models were effective in determining optimal geometry of BMT driving assembly.

Numerical Analysis of Fiber Reinforced Concrete Base Subjected to Environmental Loads (섬유보강 콘크리트 기층의 환경하중에 대한 거동 수치 해석)

  • Cho, Young-Kyo;Kim, Seong-Min;Park, Jong-Sub;Park, Young-Hwan
    • International Journal of Highway Engineering
    • /
    • v.13 no.1
    • /
    • pp.239-249
    • /
    • 2011
  • The behavior of the fiber reinforced concrete (FRC) base under environmental loads was analyzed numerically as a fundamental study to develop a high structural and functional performance composite pavement system in which the base was formed using FRC and the asphalt or cement concrete surface was placed on it. A two-dimensional finite element model of the FRC base was developed and the sensitivity study was performed with the variables including slab thickness of base, thermal expansion coefficient, elastic modulus, and tensile and compressive strengths. The crack spacing and crack width were selected as representatives of the base behavior. The effects of the selected variables on the crack spacing and crack width were analyzed and the sensitive variables were determined. The results of this study could be useful to determine the optimal material properties of the FRC base for combining well with the surface materials.

A Computational Study of a Supersonic Flow with Base Bleed (Base Bleed 를 가지는 초음속 유동에 대한 수치해석적 연구)

  • Lee, Young-Ki;Kim, Heuy-Dong;Raghunathan, Srinivasan
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1589-1594
    • /
    • 2004
  • A numerical analysis has been performed to give an understanding of the physics of a compressible base flow with mass bleed in a Mach 2.47 freestream. Axisymmetric, compressible mass-averaged Navier-Stokes equations are computed using a two-equation turbulence model, standard ${\kappa}-{\omega}$, and a fully implicit finite volume scheme. The mass bleed is characterized by the change in the mass flow rate of the bleed jet non-dimensionalized by the product of the base area and freestream mass flux. The result showing that there is an optimum bleed condition with maximum base pressure, leading to a minimum base drag, is clearly predicted and the validation with experimental data shows reasonable agreement.

  • PDF

Finite Small Clauses in Japanese and Their Theoretical Implications

  • Kuno, Masakazu
    • Proceedings of the Korean Society for Language and Information Conference
    • /
    • 2002.02a
    • /
    • pp.237-248
    • /
    • 2002
  • This paper investigates the internal structure of finite small clauses (FSC). I will propose that a FSC is base-generated at Spec-CP and a null operator is involved to check the formal features of the embedded T and turn a sentence into a predicate.

  • PDF

Analysis of dynamic characteristic applying frame on stamped base in 2.5 inch hard disk drive (프레임이 적용된 스탬프 베이스의 동특성 분석)

  • Lim, Geonyup;Park, No-Cheol;Park, Kyoung-Su;Kim, Seokhwan
    • Transactions of the Society of Information Storage Systems
    • /
    • v.9 no.2
    • /
    • pp.51-55
    • /
    • 2013
  • HDD has been easily exposed to the external shock and vibration because HDD has to apply to mobile devices. Therefore, the stiffness of base has been the important factors for the design of HDD. To improve the stiffness of base, the frame was applied to the base. First, the finite element model of the base was constructed. Then, the FE model was verified by modal analysis. Drop test was performed to confirming the shock simulation model. The dynamic characteristic of original base which is verified is compared with the base which is applied the frame through modal analysis and shock analysis.

Evaluation of Moment Resisting Post-Base Connection Using Multi-directional Connector (다방향 접합철물 삽입형 기둥-기초 접합부 모멘트 저항성능평가)

  • Kim, Keon-Ho;Lee, Sang-Joon
    • Journal of the Korea Furniture Society
    • /
    • v.25 no.4
    • /
    • pp.331-337
    • /
    • 2014
  • The purpose of this paper is to evaluate the moment resistance of glulam post-to-base connections by applying quasi-static cyclic loads. The connectors consisted of inserted plates and drifted pins according to the load direction. The connection types employed in this study were total three including two unidirectional types (H, V) and the multi-directional type (M). The moment resistance of 8 mm-plate M-type is compared to 6 mm plate. Total four types of Post-to-base connection are prepared and tested under pseudo-static reversed cyclic loading. Test results showed that the yield moment of multi-directional connection is about 2 times higher than that uni-directional connections. The ductility ratio of multi-directional connection determined by EEEP was higher that that of uni-directional connection. It was becoming higher as the thickness of plate is increased. The Finite Element Analysis was conducted to estimate the stress distribution behavior of tested connections. Results showed the failure of multi-directional type were caused by the split of pined hole and the shear failure of lifted part of post.

  • PDF

Design of piezoelectric Shunt Structure using Admittance Analysis with Application to O.D.D. Main Base (어드미턴스를 이용한 압전 션트 구조물의 설계방법과 O.D.D. 메인 베이스로의 응용)

  • Park, Jong-Sung;Lim, Soo-Cheol;Choi, Seung-Bok;Kim, Jae-Hwan;Park, Young-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.403-406
    • /
    • 2004
  • In this paper, the design of damped structures associated with the piezoelectric shunt circuits is undertaken and it is applied to optical disk drive (O.D.D) main base in order to reduce unwanted vibration. In order to design effective piezoelectric structure, the admittance of the structure is introduced as the performance index of the piezoelectric shunt system. And the admittance offset of the shunt performance is theoretically investigated. It is also presented that the admittance can be calculated by commercial finite elements program. To verify the admittance calculated by F.E.M, admittance measurement is performed by impedance analyzer. In this verifying process, the validity of the finite element admittance analysis is found. As a practical approach, to reduce the vibration of the O.D.D. main base, piezoelectric shunt system is designed using the proposed admittance analysis and shunt effect is evaluated at all prescribed frequencies.

  • PDF

Rotational behavior of exposed column bases with different base plate thickness

  • Cui, Yao;Wang, Fengzhi;Li, Hao;Yamada, Satoshi
    • Steel and Composite Structures
    • /
    • v.32 no.4
    • /
    • pp.497-507
    • /
    • 2019
  • Exposed column base connections are used in low- to mid-rise steel moment resisting frames. This paper is to investigate the effect of the base plate thickness on the exposed column base connection strength, stiffness, and energy dissipation. Five specimens with different base plate thickness were numerically modelled using ABAQUS software. The numerical model is able to reproduce the key characteristics of the experimental response. Based on the numerical analysis, the critical base plate thickness to identify the base plate and anchor rod yield mechanism is proposed. For the connection with base plate yield mechanism, the resisting moment is carried by the flexural bending of the base plate. Yield lines in the base plate on the tension side and compression side are illustrated, respectively. This type of connection exhibits a relatively large energy dissipation. For the connection with anchor rod yield mechanism, the moment is resisted through a combination of bearing stresses of concrete foundation on the compression side and tensile forces in the anchor rods on the tension side. This type of connection exhibits self-centering behavior and shows higher initial stiffness and bending strength. In addition, the methods to predict the moment resistance of the connection with different yield mechanisms are presented. And the evaluated moment resistances agree well with the values obtained from the FEM model.

A STUDY ON CRANIOFACIAL GROWTH ANALYSIS OF KOREAN CHILDREN BY THE FINITE ELEMENT METHOD (한국아동의 악안면성장에 관한 유한요소법적 연구)

  • Tahk, Seon-Gun
    • The korean journal of orthodontics
    • /
    • v.18 no.2
    • /
    • pp.343-366
    • /
    • 1988
  • Craniofacial complex is influenced by numerical skeletal elements. Though the analysis of growth change has been done by various analytical methods, it was dependent on any method of registration and superimposition, based on reference plane and reference point. However, the craniofacial growth is composed of a number of local growth elements. Therefore, it will be necessary to use a clinically useful method for estimating craniofacial skeletal growth independently. The author analysed longitudinal cephalometric roentgenogram of 15 Korean males and 15 Korean females aged from 6 to 12 years by the finite element method and results were as follows : 1. The finite element method for craniofacial skeletal complex and soft tissue made it possible to analyze the independent local growth. 2. Regression equations from the value of each strain will make it possible to predict the craniofacial growth. 3. The growth of anterior cranial base was different from that of other facial bone. 4. The growth of posterior cranial base influenced the growth of upper pharyngeal region, midfacial region, maxilla and posterior region of mandible. 5. The growth of maxillary complex was vertical rather than horizontal. 6. The growth direction of ramus, mandibular body, alveolar bone was various. 7. The relation between hard tissue and soft tissue by finite element method was variant.

  • PDF

Staged Finite Element Modeling with Coupled Seepage and Stress Analysis

  • Lee, Jae-Young
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.6
    • /
    • pp.703-714
    • /
    • 2010
  • This paper proposes an approach for staged finite element modeling with coupled seepage and stress analysis. The stage modeling is based on the predefined inter-relationship between the base model and the unit stage models. A unit stage constitutes a complete finite element model, of which the geometries and attributes are subject to changes from stage to stage. The seepage analysis precedes the mechanical stress analysis at every stage. Division of the wet and dry zone and the pore pressures are evaluated from the seepage analysis and used in determining input data for the stress analysis. The results of the stress analysis may also be associated with the pore water pressures. For consolidation analysis, the pore pressure and the displacement variables are mixed in a coupled matrix equation. The time marching solution produces the dissipation of excess pore pressure and variation of stresses with passage of time. For undrained analysis, the excess pore pressures are computed from the stress increment due to loading applied in the unit stage and are used in revising the hydraulic head. The solution results of a unit stage are inherited and accumulated to the subsequent stages through the relationship of the base model and the individual unit stages. Implementation of the proposed approach is outlined on the basis of the core procedures, and numerical examples are presented for demonstration of its application.