• Title/Summary/Keyword: fingerprint localization

Search Result 35, Processing Time 0.026 seconds

A Study of Multi-Target Localization Based on Deep Neural Network for Wi-Fi Indoor Positioning

  • Yoo, Jaehyun
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.10 no.1
    • /
    • pp.49-54
    • /
    • 2021
  • Indoor positioning system becomes of increasing interests due to the demands for accurate indoor location information where Global Navigation Satellite System signal does not approach. Wi-Fi access points (APs) built in many construction in advance helps developing a Wi-Fi Received Signal Strength Indicator (RSSI) based indoor localization. This localization method first collects pairs of position and RSSI measurement set, which is called fingerprint database, and then estimates a user's position when given a query measurement set by comparing the fingerprint database. The challenge arises from nonlinearity and noise on Wi-Fi RSSI measurements and complexity of handling a large amount of the fingerprint data. In this paper, machine learning techniques have been applied to implement Wi-Fi based localization. However, most of existing indoor localizations focus on single position estimation. The main contribution of this paper is to develop multi-target localization by using deep neural, which is beneficial when a massive crowd requests positioning service. This paper evaluates the proposed multilocalization based on deep learning from a multi-story building, and analyses its learning effect as increasing number of target positions.

The Indoor Localization Algorithm using the Difference Means based on Fingerprint in Moving Wi-Fi Environment (이동 Wi-Fi 환경에서 핑거프린트 기반의 Difference Means를 이용한 실내 위치추정 알고리즘)

  • Kim, Tae-Wan;Lee, Dong Myung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.11
    • /
    • pp.1463-1471
    • /
    • 2016
  • The indoor localization algorithm using the Difference Means based on Fingerprint (DMFPA) to improve the performance of indoor localization in moving Wi-Fi environment is proposed in this paper. In addition to this, the performance of the proposed algorithm is also compared with the Original Fingerprint Algorithm (OFPA) and the Gaussian Distribution Fingerprint Algorithm (GDFPA) by our developed indoor localization simulator. The performance metrics are defined as the accuracy of the average localization accuracy; the average/maximum cumulative distance of the occurred errors and the average measurement time in each reference point.

Indoor Localization Algorithm using Virtual Access Points in Wi-Fi Environment

  • Labinghisa, Boney;Lee, Dong Myung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2016.10a
    • /
    • pp.168-171
    • /
    • 2016
  • In recent years, indoor localization in Wi-Fi environment has been researched for its location determining capability. The fingerprint and RF propagation models has been the main approach in determining indoor positioning. With the use of fingerprint, a low-cost, versatile localization system can be achieved without the use of external hardware. However, only a few research have been made on virtual access points (VAPs) among indoor localization models. In this paper, the idea of indoor localization system using fingerprint with the addition of VAP in Wi-Fi environment is discussed. The idea is to virtually add APs in the existing indoor Wi-Fi system, this would mean additional virtually APs in the network. The experiments of the proposed algorithm shows the positive results when 2VAPs are used compared with only APs. A combination of 3APs and 2VAPs had the lowest average error in all 4 scenarios with 3.99 meters.

Enhanced Accurate Indoor Localization System Using RSSI Fingerprint Overlapping Method in Sensor Network (센서네트워크에서 무선 신호세기 Fingerprint 중첩 방식을 적용한 정밀도 개선 실내 위치인식 시스템)

  • Jo, Hyeong-Gon;Jeong, Seol-Young;Kang, Soon-Ju
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.8C
    • /
    • pp.731-740
    • /
    • 2012
  • To offer indoor location-aware services, the needs for efficient and accurate indoor localization system has been increased. In order to meet these requirement, we presented the BLIDx(Bidirectional Location ID exchange) protocol that is efficient localization system based on sensor network. The BLIDx protocol can cope with numerous mobile nodes simultaneously but the precision of the localization is too coarse because that uses cell based localization method. In this paper, in order to compensate for these disadvantage, we propose the fingerprint overlapping method by modifying a fingerprinting methods in WLAN, and localization system using proposed method was designed and implemented. Our experiments show that the proposed method is more accurate and robust to noise than fingerprinting method in WLAN. In this way, it was improved that low location precision of BLIDx protocol.

An indoor localization approach using RSSI and LQI based on IEEE 802.15.4 (IEEE 802.15.4기반 RSSI와 LQI를 이용한 실내 위치추정 기법)

  • Kim, Jung-Ha;Kim, Hyun-Jun;Kim, Jong-Su;Lee, Sung-Geun;Seo, Dong-Hoan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.1
    • /
    • pp.92-98
    • /
    • 2014
  • Recently, Fingerprint approach using RSSI based on WLAN has been many studied in order to construct low-cost indoor localization systems. Because this technique is relatively evaluated non-precise positioning technique compared with the positioning of Ultra-Wide-Band(UWB), the performance of the Fingerprint based on WLAN should be continuously improved to implement various indoor location. Therefore, this paper presents a Fingerprint approach which can improve the performance of localization by using RSSI and LQI contained IEEE 802.15.4 standard. The advantages of these techniques are that the characteristics of each location is created more clearly by utilizing RSSI and LQI and Fingerprint technique is improved by using the modified Euclidean distance method. The experimental results which are applied in NLOS indoor environment with various obstacles show that the accuracy of localization is improved to 22% compared to conventional Fingerprint.

Indoor localization algorithm based on WLAN using modified database and selective operation (변형된 데이터베이스와 선택적 연산을 이용한 WLAN 실내위치인식 알고리즘)

  • Seong, Ju-Hyeon;Park, Jong-Sung;Lee, Seung-Hee;Seo, Dong-Hoan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.8
    • /
    • pp.932-938
    • /
    • 2013
  • Recently, the Fingerprint, which is one of the methods of indoor localization using WLAN, has been many studied owing to robustness about ranging error by the diffraction and refraction of radio waves. However, in the signal gathering process and comparison operation for the measured signals with the database, this method requires time consumption and computational complexity. In order to compensate for these problems, this paper presents, based on proposed modified database, WLAN indoor localization algorithm using selective operation of collected signal in real time. The proposed algorithm reduces the configuration time and the size of the data in the database through linear interpolation and thresholding according to the signal strength, the localization accuracy, while reducing the computational complexity, is maintained through selective operation of the signals which are measured in real time. The experimental results show that the accuracy of localization is improved to 17.8% and the computational complexity reduced to 46% compared to conventional Fingerprint in the corridor by using proposed algorithm.

Measurement-based AP Deployment Mechanism for Fingerprint-based Indoor Location Systems

  • Li, Dong;Yan, Yan;Zhang, Baoxian;Li, Cheng;Xu, Peng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.4
    • /
    • pp.1611-1629
    • /
    • 2016
  • Recently, deploying WiFi access points (APs) for facilitating indoor localization has attracted increasing attention. However, most existing mechanisms in this aspect are typically simulation based and further they did not consider how to jointly utilize pre-existing APs in target environment and newly deployed APs for achieving high localization performance. In this paper, we propose a measurement-based AP deployment mechanism (MAPD) for placing APs in target indoor environment for assisting fingerprint based indoor localization. In the mechanism design, MAPD takes full consideration of pre-existing APs to assist the selection of good candidate positions for deploying new APs. For this purpose, we first choose a number of candidate positions with low location accuracy on a radio map calibrated using the pre-existing APs and then use over-deployment and on-site measurement to determine the actual positions for AP deployment. MAPD uses minimal mean location error and progressive greedy search for actual AP position selection. Experimental results demonstrate that MAPD can largely reduce the localization error as compared with existing work.

Efficient Kernel Based 3-D Source Localization via Tensor Completion

  • Lu, Shan;Zhang, Jun;Ma, Xianmin;Kan, Changju
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.1
    • /
    • pp.206-221
    • /
    • 2019
  • Source localization in three-dimensional (3-D) wireless sensor networks (WSNs) is becoming a major research focus. Due to the complicated air-ground environments in 3-D positioning, many of the traditional localization methods, such as received signal strength (RSS) may have relatively poor accuracy performance. Benefit from prior learning mechanisms, fingerprinting-based localization methods are less sensitive to complex conditions and can provide relatively accurate localization performance. However, fingerprinting-based methods require training data at each grid point for constructing the fingerprint database, the overhead of which is very high, particularly for 3-D localization. Also, some of measured data may be unavailable due to the interference of a complicated environment. In this paper, we propose an efficient kernel based 3-D localization algorithm via tensor completion. We first exploit the spatial correlation of the RSS data and demonstrate the low rank property of the RSS data matrix. Based on this, a new training scheme is proposed that uses tensor completion to recover the missing data of the fingerprint database. Finally, we propose a kernel based learning technique in the matching phase to improve the sensitivity and accuracy in the final source position estimation. Simulation results show that our new method can effectively eliminate the impairment caused by incomplete sensing data to improve the localization performance.

Performance Analysis of Indoor Localization Algorithm Using Virtual Access Points in Wi-Fi Environment (Wi-Fi 환경에서 가상 Access Point를 이용한 실내 위치추정 알고리즘의 성능분석)

  • Labinghisa, Boney;Lee, Dong Myung
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.6 no.3
    • /
    • pp.113-120
    • /
    • 2017
  • In recent years, indoor localization has been researched for the improvement of its localization accuracy capability in Wi-Fi environment. The fingerprint and RF propagation models has been the main approach in determining indoor positioning. With the use of fingerprint, a low-cost, versatile localization system can be achieved without the use of external hardware. However, only a few research have been made on virtual access points (VAPs) among indoor localization models. In this paper, the idea of indoor localization system using fingerprint with the addition of VAP in Wi-Fi environment is discussed. The idea is to virtually add APs in the existing indoor Wi-Fi system, this would mean additional virtually APs in the network. The experiments of the proposed algorithm shows the positive results when 2VAPs are used compared with only APs. A combination of 3APs and 2VAPs in the 3rd case had the lowest average error of 3.99 among its 4 scenarios.

BtPDR: Bluetooth and PDR-Based Indoor Fusion Localization Using Smartphones

  • Yao, Yingbiao;Bao, Qiaojing;Han, Qi;Yao, Ruili;Xu, Xiaorong;Yan, Junrong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.8
    • /
    • pp.3657-3682
    • /
    • 2018
  • This paper presents a Bluetooth and pedestrian dead reckoning (PDR)-based indoor fusion localization approach (BtPDR) using smartphones. A Bluetooth and PDR-based indoor fusion localization approach can localize the initial position of a smartphone with the received signal strength (RSS) of Bluetooth. While a smartphone is moving, BtPDR can track its position by fusing the localization results of PDR and Bluetooth RSS. In addition, BtPDR can adaptively modify the parameters of PDR. The contributions of BtPDR include: a Bluetooth RSS-based Probabilistic Voting (BRPV) localization mechanism, a probabilistic voting-based Bluetooth RSS and PDR fusion method, and a heuristic search approach for reducing the complexity of BRPV. The experiment results in a real scene show that the average positioning error is < 2m, which is considered adequate for indoor location-based service applications. Moreover, compared to the traditional PDR method, BtPDR improves the location accuracy by 42.6%, on average. Compared to state-of-the-art Wireless Local Area Network (WLAN) fingerprint + PDR-based fusion indoor localization approaches, BtPDR has better positioning accuracy and does not need the same offline workload as a fingerprint algorithm.