• Title/Summary/Keyword: fingerprint classification

Search Result 77, Processing Time 0.039 seconds

Technical Trend Analysis of Fingerprint Classification (지문분류 기술 동향 분석)

  • Jung, Hye-Wuk;Lee, Seung
    • The Journal of the Korea Contents Association
    • /
    • v.17 no.9
    • /
    • pp.132-144
    • /
    • 2017
  • The fingerprint classification of categorizing fingerprints by classes should be used in order to improve the processing speed and accuracy in a fingerprint recognition system using a large database. The fingerprint classification methods extract features from the fingerprint ridges of a fingerprint and classify the fingerprint using learning and reasoning techniques based on the classes defined according to the flow and shape of the fingerprint ridges. In earlier days, many researches have been conducted using NIST database acquired by pressing or rolling finger against a paper. However, as automated systems using live-scan scanners for fingerprint recognition have become popular, researches using fingerprint images obtained by live-scan scanners, such as fingerprint data provided by FVC, are increasing. And these days the methods of fingerprint classification using Deep Learning have proposed. In this paper, we investigate the trends of fingerprint classification technology and compare the classification performance of the technology. We desire to assist fingerprint classification research with increasing large fingerprint database in improving the performance by mentioning the necessity of fingerprint classification research with consideration for fingerprint images based on live-scan scanners and analyzing fingerprint classification using deep learning.

Plain Fingerprint Classification Based on a Core Stochastic Algorithm

  • Baek, Young-Hyun;Kim, Byunggeun
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.5 no.1
    • /
    • pp.43-48
    • /
    • 2016
  • We propose plain fingerprint classification based on a core stochastic algorithm that effectively uses a core stochastic model, acquiring more fingerprint minutiae and direction, in order to increase matching performance. The proposed core stochastic algorithm uses core presence/absence and contains a ridge direction and distribution map. Simulations show that the fingerprint classification accuracy is improved by more than 14%, on average, compared to other algorithms.

An Efficient Fingerprint Classification using Gabor Filter (Gabor 필터를 이용한 효율적인 지문분류)

  • Shim, Hyun-Bo;Park, Young-Bae
    • The KIPS Transactions:PartB
    • /
    • v.9B no.1
    • /
    • pp.29-34
    • /
    • 2002
  • Fingerprint recognition technology was studied by classification and matching. In general, there are five different classifications left loop, right loop, whore, arch, and tented-arch. These classifications are used to determine which class an individual's fingerprint belong to, thereby identifying the individual's fingerprint pattern. The result of this classification, which is sent to the large fingerprint database as an index, helps reduce the matching time and enhance the accuracy of fingerprint matching. The existing fingerprint classification method relies on the number and location of cores and delta points called singular points. The drawback of this method is the lack of accuracy stemming from the classification difficulty involving unclear and/or partially-erased fingerprints. The current paper presents an efficient classification method to rectify the problem associated with identifying Singular points from unclear fingerprints. This method, which is based on Gabor filter's unique characteristics for magnifying directional patterns and frequency range selections, improves fingerprint classification accuracy significantly. In this paper, this method is described and its test result is presented for verification.

Various Quality Fingerprint Classification Using the Optimal Stochastic Models (최적화된 확률 모델을 이용한 다양한 품질의 지문분류)

  • Jung, Hye-Wuk;Lee, Jee-Hyong
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.1
    • /
    • pp.143-151
    • /
    • 2010
  • Fingerprint classification is a step to increase the efficiency of an 1:N fingerprint recognition system and plays a role to reduce the matching time of fingerprint and to increase accuracy of recognition. It is difficult to classify fingerprints, because the ridge pattern of each fingerprint class has an overlapping characteristic with more than one class, fingerprint images may include a lot of noise and an input condition is an exceptional case. In this paper, we propose a novel approach to design a stochastic model and to accomplish fingerprint classification using a directional characteristic of fingerprints for an effective classification of various qualities. We compute the directional value by searching a fingerprint ridge pixel by pixel and extract a directional characteristic by merging a computed directional value by fixed pixels unit. The modified Markov model of each fingerprint class is generated using Markov model which is a stochastic information extraction and a recognition method by extracted directional characteristic. The weight list of classification model of each class is decided by analyzing the state transition matrixes of the generated Markov model of each class and the optimized value which improves the performance of fingerprint classification using GA (Genetic Algorithm) is estimated. The performance of the optimized classification model by GA is superior to the model before the optimization by the experiment result of applying the fingerprint database of various qualities to the optimized model by GA. And the proposed method effectively achieved fingerprint classification to exceptional input conditions because this approach is independent of the existence and nonexistence of singular points by the result of analyzing the fingerprint database which is used to the experiments.

A Study on Automatic Classification of Fingerprint Images (지문 영상의 자동 분류에 관한 연구)

  • Lim, In-Sic;Sin, Tae-Min;Park, Goo-Man;Lee, Byeong-Rae;Park, Kyu-Tae
    • Proceedings of the KIEE Conference
    • /
    • 1988.07a
    • /
    • pp.628-631
    • /
    • 1988
  • This paper describes a fingerprint classification on the basis of feature points(whorl, core) and feature vector and uses a syntactic approach to identify the shape of flow line around the core. Fingerprint image is divided into 8 by 8 subregions and fingerprint region is separated from background. For each subregion of fingerprint region, the dominant ridge direction is obtained to use the slit window quantized in 8 direction and relaxation is performed to correct ridge direction code. Feature points(whorl, core, delta) are found from the ridge direction code. First classification procedure divides the types of fingerprint into 4 class based on whorl and cores. The shape of flow line around the core is obtained by tracing for the fingerprint which has one core or two core and is represented as string. If the string is acceptable by LR(1) parser, feature vector is obtained from feature points(whorl, core, delta) and the shape of flow line around the core. Feature vector is used hierarchically and linearly to classify fingerprint again. The experiment resulted in 97.3 percentages of sucessful classification for 71 fingerprint impressions.

  • PDF

Fingerprint Classification Based On the Entropy of Ridges (융선 엔트로피 계측을 이용한 지문 분류)

  • Park, Chang-Hee;Yoon, Kyung-Bae;Ko, Chang-Bae
    • The KIPS Transactions:PartB
    • /
    • v.10B no.5
    • /
    • pp.497-502
    • /
    • 2003
  • Fingerprint classification plays a role of reduction of precise joining time and improvement of the accuracy in a large volume of database. Patterns of fingerprint are classified as 5 patterns : left loop, right loop, arch, whorl, and tented arch by numbers and the location of core point and delta point. The existing fingerprint classification is useful in a captured fingerprint image of core point and delta point using paper and ink. However, this system is unapplicable in modern Automatic Fingerprint Identification System (AFIS) because of problems such as size of input and way of input. To solve the problem, this study is to suggest the way of being able to improve accuracy of fingerprint by fingerprint classification based on the entropy of ridges using fingerprint captured mage of core point and prove this through the experiment.

Effective Fingerprint Classification using Subsumed One-Vs-All Support Vector Machines and Naive Bayes Classifiers (포섭구조 일대다 지지벡터기계와 Naive Bayes 분류기를 이용한 효과적인 지문분류)

  • Hong, Jin-Hyuk;Min, Jun-Ki;Cho, Ung-Keun;Cho, Sung-Bae
    • Journal of KIISE:Software and Applications
    • /
    • v.33 no.10
    • /
    • pp.886-895
    • /
    • 2006
  • Fingerprint classification reduces the number of matches required in automated fingerprint identification systems by categorizing fingerprints into a predefined class. Support vector machines (SVMs), widely used in pattern classification, have produced a high accuracy rate when performing fingerprint classification. In order to effectively apply SVMs to multi-class fingerprint classification systems, we propose a novel method in which SVMs are generated with the one-vs-all (OVA) scheme and dynamically ordered with $na{\ddot{i}}ve$ Bayes classifiers. More specifically, it uses representative fingerprint features such as the FingerCode, singularities and pseudo ridges to train the OVA SVMs and $na{\ddot{i}}ve$ Bayes classifiers. The proposed method has been validated on the NIST-4 database and produced a classification accuracy of 90.8% for 5-class classification. Especially, it has effectively managed tie problems usually occurred in applying OVA SVMs to multi-class classification.

Research Trends in CNN-based Fingerprint Classification (CNN 기반 지문분류 연구 동향)

  • Jung, Hye-Wuk
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.5
    • /
    • pp.653-662
    • /
    • 2022
  • Recently, various researches have been made on a fingerprint classification method using Convolutional Neural Networks (CNN), which is widely used for multidimensional and complex pattern recognition such as images. The CNN-based fingerprint classification method can be executed by integrating the two-step process, which is generally divided into feature extraction and classification steps. Therefore, since the CNN-based methods can automatically extract features of fingerprint images, they have an advantage of shortening the process. In addition, since they can learn various features of incomplete or low-quality fingerprints, they have flexibility for feature extraction in exceptional situations. In this paper, we intend to identify the research trends of CNN-based fingerprint classification and discuss future direction of research through the analysis of experimental methods and results.

Hierarchical classification of Fingerprints using Discrete Wavelet Transform (이산 웨이블릿 변환을 이용한 지문의 계층적 분류)

  • Kwon, Yong-Ho;Lee, Jung-Moon
    • Journal of Industrial Technology
    • /
    • v.19
    • /
    • pp.403-408
    • /
    • 1999
  • An efficient method is developed for classifying fingerprint data based on 2-D discrete wavelet transform. Fingerprint data is first converted to a binary image. Then a multi-level 2-D wavelet transform is performed. Vertical and horizontal subbands of the transformed data show typical energy distribution patterns relevant to the fingerprint categories. The proposed method with moderate level of wavelet transform is successful in classifying fingerprints into 5 different types. Finer classification is possible by higher frequency subbands and closer analysis of energy distribution.

  • PDF

An Ensemble Fingerprint Classification System Using Changes of Gradient of Ridge (융선 기울기의 변화량을 이용한 앙상블 지문분류 시스템)

  • Yoon, Kyung-Bae;Park, Chang-Hee
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.5
    • /
    • pp.545-551
    • /
    • 2003
  • Henry System which is a traditional fingerprint classification model is difficult to apply to a modem Automatic Fingerprint Identification System (AFIS). To tackle this problem, this study is to apply algorithm for an An Ensemble Fingerprint Classroom System using changes of gradient of ridge in order to improve precise joining speed of a large volume of database. The existing classification system, Henry System, is useful in a captured fingerprint image of core point and delta point using paper and ink. However, the Henry System is unapplicable in modem Automatic Fingerprint Identification System (AFIS) because of problems such as size of input sensor and way of input. This study is to suggest an Ensemble Fingerprint Classroom System which can classify 5 basic patterns of Henry System in uncaptured delta image using changes of gradient of ridge. The proposed fingerprint classification technique will make an improvement of precise joining speed by reducing data volume.