• Title/Summary/Keyword: fine powders

Search Result 493, Processing Time 0.022 seconds

Topological Study of the Behavior of Inorganic Fine Powers and a Nanovesicle Hybridized Coating

  • Seo, Dong-Sung;Kim, Dong-Pyo;Jin, Fan-Long;Park, Soo-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.2
    • /
    • pp.343-347
    • /
    • 2009
  • In this study, the surface of inorganic fine powders is hybridized with nanovesicles containing tocopheryl acetate prepared with hydrogenated lecithin via a coating process. From AFM and SEM analyses it is found that the surface of the nanovesicle-coated fine powders lost their traditional topology and improved in terms of their roughness, skewness, and kurtosis. In addition, TEM observations revealed the formation of a 5 nm thick coating layer on the surface of the fine powders. These hybridized powders, in which bioactive materials such as tocopheryl acetate can be embedded, can be employed as a part of a drug delivery system due to their special ability to control release rate and temperature selectivity. Physical properties of the powders, i.e., the different angle and friction coefficient, were excellent.

Direct Preparation of fine Powders of Bi-Pb-Sr-Ca-Cu-O by Ultrasonic Spray Pyrolysis (초음파 분무열분해에 의한 Bi-Pb-Sr-Ca-Cu-O의 미분체 제조)

  • 주명희;박도순;김윤수
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.5
    • /
    • pp.353-358
    • /
    • 1991
  • Fine powders of the 2212 superconducting phase of bismuth system have been prepared directly from solution using ultrasonic spray pyrolysis. The fine superconducting powders produced by pyrolysis were characterized for the size, shape, and crystalline phase by SEM and XRD. The pyrolysis temperature, flow rate of the carrier gas, residence time of the droplets greatly influenced the size, shape, and crystalline phase. The optimum temperature and flow rate of the carrier gas for the preparation of fine powders of the 2212 superconduting phase were found to be 830$^{\circ}C$and 3ι/min, respectively.

  • PDF

Synthesis and Shape Control Calcium Hydroxide Fine Powders by Hydration of Calcium Oxide (산화칼슘의 수화에 의한 수산화칼슘 미분말의 합성과 형상제어)

  • 민경소;최상흘
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.9
    • /
    • pp.739-749
    • /
    • 1991
  • Calcium hydroxide fine powders were synthesized by hydration of calcium oxide, and the shapes of powders obtained were examined for each synthethic condition. When distilled water was used as a solvent, irregular and agglomerated submicron powders were obtained, and it was impossible to control of the shapes. In methanol-added solutions, hexagonal plate-like particles were obtained, but addition of ethanol had no effect. However on the occasion that substituted ethylene glycol for ethanol of 5 vol%, hexagonal plate-like powders were obtained. The shapes of powders synthesized in acetic acid and salicylic acid solutions were hexagonal platelike, and were spherical and very fine in citric acid and oxalic acid solutions, respectively. But in some solutions, calcium salts were precipitated by the reaction between calcium and acid added. And the size of powders were very fine using ultrasonic vibration instead of mechanical agitation.

  • PDF

Crystal Structure of $TiO_2-SnO_2$ Fine Powders Prepared by Coprecipitation (공침법에 의해 제조된 $TiO_2-SnO_2$ 미분말의 결정구조)

  • 이종흔;박순자
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.9
    • /
    • pp.740-746
    • /
    • 1993
  • TiO2-SnO2 fine powders prepared by coprecipitation from TiCl4-SnCl4 aqueous solution, and their crystal structures were studied. All the TiO2-SnO2 fine powders calcined at 180~$700^{\circ}C$ showed the complete solid solution between TiO2(rutile structure) and SnO2(rutile structure). This crystal structure of TiO2-SnO2 powders is thought to be originated mainly from the heterogeneous nucleation of Ti-hydroxde on the Sn-hydroxide with coherent structure.

  • PDF

Fine Powder Synthesis and It`s Sintering Characteristics of Gd2O3Doped CeO2 by the Oxalate Coprecipitation Method (Oxalate 공침법에 의한 Gd2O3Doped CeO2의 미분말 합성 및 그 소결특성)

  • 최광훈;박성용;이주진
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.1
    • /
    • pp.46-55
    • /
    • 2002
  • 10mo1% Gd$_2$O$_3$ doped CeO$_2$ fine powders were synthesized by the oxalate coprecipitation method. The characteristics and sintering behavior of fine powders were investigated. The oxalate precipitates had the specific surface area of 150$m^2$/g, and appeared to be fine and spherical primary particles with a size of approximately 5.5nm. The decomposition of the precipitates occurred from a temperature around 30$0^{\circ}C$ and it was completed below 40$0^{\circ}C$, resulted in the formation of the oxide. The calcination temperature of the fine powders was suitable at 77$0^{\circ}C$. By introducing fine powders washed with alcohol and ball-milling process after calcination, the sintered body was possible to attain the value of 97% of the theoretical density at low temperature of 130$0^{\circ}C$

Preparation of Monodispersed $SiO_2/ZnO$ Composite Fine Powders by Sol-Gel Method (졸-겔법엔 의한 단분산 $SiO_2/ZnO$ 복합미립자의 졔조)

  • Lee, Chang-Woo;Shim, Won;Hahm, Yeong-Min;Hur, Yun-Haeng
    • Journal of environmental and Sanitary engineering
    • /
    • v.13 no.3
    • /
    • pp.58-65
    • /
    • 1998
  • Monodispersed $SiO_2/ZnO$ composite fine powders were prepared by Sol-Gel processing and their surface electrical and UV absorbance properties were investigated. Pseudomorph ZnO fine powders were microcapsuled by $SiO_2/ZnO$ sol fabricated using TEOS[tetraethylorthosilicate, purity 98% and ethanol as a solvent with $NH_3$ catalyst. The effects of experimental parameters such as molar ratio of starting materials on the final particle size and shape of $SiO_2/ZnO$ composite fine powder were discussed. As a result, we could controlled the size of monodispersed $SiO_2/ZnO$ composite fine powders without agglomeration, as well as the good dispersibility in aquous solution. The prepared powders were observed to have the mean particle sizes of $0.26-0.78{\mu}m$ with standard deviations of $0.020-0.063{\mu}m$.

  • PDF

Reinforcement of Porous Mullite Ceramics Using Ultra Fine Mullite Precursor Powders

  • Cho, Yong-Ick;Hisao Suzuki;Hidehiro Kamiya
    • The Korean Journal of Ceramics
    • /
    • v.5 no.2
    • /
    • pp.137-141
    • /
    • 1999
  • To increase the strength of high-purity porous mullite ceramics, ultra fine mullite precursor powders of about 10nm in diameter were deposited at point of contact between primary coarse mullite particles of about 60$\mu\textrm{m}$. The deposited and hetero coagulated structures of ultra fine mullite precursor powders were controlled by pH. The optimum pH condition to form a uniform deposition of mullite powders between coarse mullite particles was in the range from 7 to 8. Deposition of the ultra fine powders did not form at pH < 7 and pH > 10 irregular deposition was observed from pH 8 to 9.

  • PDF

Characteristics of Fine WO3 Powders Prepared by Emulsion Evaporation (에멀전증발법으로 제조된 미세 산화텅스텐 분말의 특성)

  • 안종관;신창훈;이만승;이충효
    • Journal of Powder Materials
    • /
    • v.9 no.2
    • /
    • pp.89-95
    • /
    • 2002
  • Spherical fine powders of tungsten oxide powders were prepared by the emulsion evaporation method. The characteristics of the powders prepared were examined by means of TGA, X-ray diffraction, SEM and image analysis. The emulsions were prepared by fast mixing of aqueous phase containing tugsten and the organic phase which composed of kerosene, surfactant, and paraffin oil. Precursors were made by evaporating the emulsionin the kerosene bath at $160^{\circ}C$, and then calcined at $650^{\circ}C$ in order to produce tungsten oxide powders. The average particle size of the tungsten oxide powders was $0.5\mutextrm{m}$ and their shapes were spherical at the both case of w/o and o/w type emulsions. As the HLB value of the surfactant increased and the concentration of tungsten ions decreased the mean particle siqe of tungsten oxide powders decreased whereas agglomerationsize increased. The optimum concentration of Span 80 was 8 percent by volume, and the optimum stirring speed in the emulsion formation was 5000 rpm in order to obtain fine and well dispersed $WO_3$ powders.

Preparation of NiO/YSZ Ultra-Fine Powder Composites Using Self-Sustaining Combustion Process (Self-Sustaining Combustion Process를 이용한 NiO/YSZ 초미세 복합분말 제조)

  • 김선재;정충환;김경호;김영석;국일현
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.4
    • /
    • pp.411-417
    • /
    • 1996
  • Ultrafine NiO/YSZ (Yttria Stabilized Zirconia) powders were made by using a glycine nitrate process which is used as anode material for solid oxide fuel cells. The specific surface areas of synthesized NiO/YSZ powders were examined with controlling pH of a precursor solution and the content of glycine. The binding of glycine with metal nitrates occurring in the precursor solution was analyzed by using FTIR. The characteristics of synthesized powders were examined with X-ray diffraction(XRD) Brunauer Emmett Teller with N2 absorption. scanning electron microscopy (SEM). and transmission electron microscopy (TEM). Ultrafine NiO/YSZ powders of 15-18 m2/g were obtained through GNP when the content of glycine was controlled to 1 or 2 times the stoichiometric ratio in the precursor solutions. Strongly acid precursor solution increased the specific surface area of the synthesized powders. This is suggested to be the increased binding of metal nitrates and glycine under a strong acid solution of pH=0.5 that lets glycine consist of mainly the amine group of {{{{ { NH}`_{3 } ^{+ } }}. After sintering and reducing treatment of NiO/YSZ powders synthesized by GNP the Ni/YSZ pellet showed ideal microstructure where very fine Ni particles of 3-5 ${\mu}{\textrm}{m}$ were distributed uniformly and fine pore around Ni metal particles was formed. leading to anincrease of the triple phase boundary among gas Ni and YSZ.

  • PDF

Consolidation and casting technology of fine poly-Si powders for economical production of Si ingot (경제적인 Si 잉곳 생산을 위한 poly-Si 미세분말의 성형과 용해주조기술)

  • Moon, Byung-Moon;Kim, Bong-Hwan;Shin, Je-Sik;Lee, Sang-Mok;Park, Gi-Seong;Kim, Dae-Suk;Kim, Ki-Young
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.261-264
    • /
    • 2007
  • In this study, the consolidation and casting processes of fine Si powders, by-products of making high purity Poly-Si rods in the current method, were systematically investigated for use as economical solar-grade feedstock. Morphology, size, and contamination type of the poly-Si fine powders were inspected by combined analysis of SEM, particle size analyzer, and FT-IR. Poly-Si powder compacts were tried to fabricate by a consolidation process without a binding agent and then their density ratio and strength were evaluated. Finally, the electrical resistivity of the specimens prepared by an electromagnetic casting method was examined for purity assessment.

  • PDF