• Title/Summary/Keyword: fine particle size

Search Result 937, Processing Time 0.029 seconds

The Examination Fire Resistance of Mortar According to Particle Size Distrivution as Oyster Shell Fine Aggregate (굴 패각의 잔골재 입도분포 변화에 따른 모르타르의 내화성 검토)

  • Choi, In-Kwon;Jung, Ui-In;Kim, Bong-Joo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.71-72
    • /
    • 2017
  • The oyster shell is lightweight and exhibits strength characteristics similar to sand. In this study, mortar specimens were fabricated by crushing them and processed to 5mm or less of the fine aggregate standard, and examined the fire resistance of the mortar according to changes in particle size distribution. In this experiment, seven particle size distribution conditions were tested. In addition, the mixing ratio was fixed at 1: 3, and the experiment was conducted in terms of the volume ratio because the densities of sand and oyster shells were different.

  • PDF

Effects of Particle Size of Alumina on Densification Behaviors of Alumina-Talc System During Liquid-Phase Sintering (알루미나-활석계의 액상소결에서 알루미나 입자크기가 치밀화 거동에 미치는 영향)

  • 김호양;이정아;김정주
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.12
    • /
    • pp.1308-1315
    • /
    • 1998
  • Effects of particle size of alumina on densification behavior during liquid-phase sintering of alumina-talc system were investigated with emphasis on particle rearrangement process. In the case of using coarse alu-mina powder densiication of specimens was rapidly accelerated after formation of liquid phase due to easy particle rearrangement process with addition of talc and increase of sintering temperature. On the contrary when fine alumina powder was used premature densification of alumina matrix region formed before for-mation of liquid phase rigid skeleton structure and then it seemed to inhibit rearrangement process during crease of sintering temperature. As results the densification of specimens using coarse alumina powder was higher than that of the case of using fine one.

  • PDF

Elemental components analysis according to the size of fine particles emitted from a coal-fired power plant using an ejector-porous tube dilution sampling and ELPI (이젝터-다공튜브 희석 샘플링과 ELPI를 이용한 석탄화력발전소 배출 미세먼지의 입자 크기에 따른 성분 분석)

  • Shin, Dongho;Park, Daehoon;Joe, Yunhui;Kim, Younghun;Hong, Kee-Jung;Lee, Gunhee;Han, Bangwoo;Hwang, Jungho
    • Particle and aerosol research
    • /
    • v.18 no.3
    • /
    • pp.69-77
    • /
    • 2022
  • In order to understand the characteristics of fine particles emitted from coal-fired power plant stacks, it is important to analyze the size distribution and components of particles. In this study, particle size distributions were measured using the ejector-porous tube dilution device and an ELPI system at a stack in a coal-fired power plant. Main elemental components of particles in each size interval were also identified through TEM-EDS analysis for the particles collected in each ELPI stage. Particle size distributions based on number and mass were analyzed with component distributions from 0.006 to 10 ㎛. The highest number concentration was about 0.01 ㎛. The main component of the particles consisted of sulfur, which indicated that sulfate aerosols were generated by gas-to-particle conversion of SO2. In a mass size distribution, a mono-modal distribution with a mode diameter of about 2 ㎛ was shown. For the components of PM1.0 (particles less than 1 ㎛), the abundance order was F > Mg > S > Ca, and however, for the components of PM10 (particles less than 10 ㎛), it was in the order of Fe > S > Ca > Mg. The elemental components by particle size were confirmed.

In situ Particle Size and Volume Concentration of Suspended Sediment in Seomjin River Estuary, Determined by an Optical Instrument,'LISST-100' (현장입도분석기를 이용한 섬진강하구 부유퇴적물의 특성 연구)

  • KIM Seok Yun;LEE Byoung Kwan
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.37 no.4
    • /
    • pp.323-329
    • /
    • 2004
  • In situ particle size and volume concentration of suspended sediment was measured at the mouth of Seomjin River Estuary In February 2001, using an optical instrument, 'LISST-100'. Time variation of in situ particle size and concentration shows: (1) during ebb tide, Seomjin River supplies relatively fine-grained particles with less-fluctuated, compared to during flood tide, and well-behaved concentrations following the tidal cycle; and (2) during flood tide, relatively coarse-grained particles with highly variable in size distribution and concentration flow upstream from Kwangyang Bay. This explains a poor correlation $(r^{2}=0.10)$ between sediment concentration and beam attenuation coefficient during flood and a high degree of correlation $(r^{2}=0.80)$ during ebb tide. Relatively fine grained and well defined, monotonous size distribution may promote the correlation between concentration and beam attenuation coefficient due to optical homogeneity of particles during ebb tide. Abundance of large aggregates with time-varying size and shape distributions may be mainly responsible for variations in optical properties of the sediment during flood tide, and thus may confound the relationship between the two variables. The difference in particle sizes and shapes between flood and ebb tides can also be observed on SEM images.

Production of Fine Metal Oxide Particles in Supercritical Water (초임계수를 이용한 금속산화물 미세입자 제조)

  • Lee, Joo-Heon;Park, Young-Woo
    • Applied Chemistry for Engineering
    • /
    • v.10 no.1
    • /
    • pp.173-176
    • /
    • 1999
  • The production of fine metal oxide particles in supercritical water has been studied. Cobalt nitrate solution and manganese nitrate solution have been selected as model solutions for metal salt aqueous solution and the particles of cobalt oxide and manganese oxide have been produced. It was observed that the production of fine metal oxide particles in supercritical water was feasible and the dehydration rate was remarkably high in supercritical water. In spite of a short residence time (3~100 seconds), fine particles ($0.5{\sim}2{\mu}m$) have been produced. In the supercritical water process, the temperature of mixer had a significant effect on particle size and size distribution. It was observed that a change in reaction temperature resulted in the control of particle size.

  • PDF

Vertical Change in Extinction and Atmospheric Particle Size in the Boundary Layers over Beijing: Balloon-borne Measurement

  • Chen, Bin;Shi, Guang-Yu;Yamada, Maromu;Zhang, Dai-Zhou;Hayashi, Masahiko;Iwasaka, Yasunobu
    • Asian Journal of Atmospheric Environment
    • /
    • v.4 no.3
    • /
    • pp.141-149
    • /
    • 2010
  • Aerosol size and number concentration were observed in the atmospheric boundary layer over Beijing (from near the ground to 1,200 m) on March 15 (a clear day) and 16 (a dusty day), 2005. The results were further compared with lidar measurements in order to understand the dependency of extinction on the particle size distribution and their vertical changes. The boundary layer atmosphere was composed of several sub-layers, and a dry air layer appeared between 400 and 1,000 m under the influence of dust event. In this dry air layer, the concentration of the fine-mode particles (diameter smaller than $1.0\;{\mu}m$) was slightly lower than the value on the clear day, while the concentration of coarse-mode particles (diameter larger than $1.0\;{\mu}m$) was remarkably higher than that on the clear day. This situation was attributed to the inflow of an air mass containing large amounts of Asian dust particles and a smaller amount of fine-mode particles. The results strongly suggest that the fine-mode particles affect light extinction even in the dusty atmosphere. However, quantitatively the relation between extinction and particle concentration is not satisfied under the dusty atmospheric conditions since laser beam attenuates in the atmosphere with high concentration of particles. Laser beam attenuation effect becomes larger in the relation between extinction and coarse particle content comparing the relation between extinction and fine particle content. To clarify this problem technically, future in situ measurements such as balloon-borne lidar are suggested. Here extinction was measured at 532 nm wavelength. Measurements of extinction at other wavelengths are desired in the future.

Properties of Normal-Strength Mortar Containing Coarsely-Crushed Bottom Ash Considering Standard Particle Size Distribution of Fine Aggregate (잔골재 표준입도를 고려하여 조파쇄 바텀애시를 혼입한 일반강도 모르타르의 성능)

  • Kim, Hyeong-Ki
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.5
    • /
    • pp.531-539
    • /
    • 2015
  • Properties of normal-strength mortar containing coarsely-crushed coal bottom ash considering standard particle size distribution of fine aggregate were investigated. Mortar containing raw bottom ash was applied as a reference. By crushing the bottom ash with a particle size larger than fine binder but smaller than fine aggregates, i.e., coarse-crushing, water absorption and specific gravity of the particles could be controlled as similar levels to those of natural fine aggregates. Workability and strength of the mortar were not changed and even increased when the coarsely-crushed bottom ash was added considering standard particle size distribution in Standard Specification for Concrete, while those were decreased when raw bottom ash was added without any treatment. When a replacement ratio of coarsely-crushed bottom ash was less than 30 vol.%, there were no significant decrease in dynamic modulus of elasticity and dry shrinkage of the mortar.

Yellow Sand Phenomena Influence to the Atmosphere in Korea (黃砂現象이 우리나라에 미치는 影響)

  • 이민희;한의정;원양수
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.2 no.3
    • /
    • pp.34-44
    • /
    • 1986
  • Particle size distribution of airborne suspended particulate concentrations according to particle size in the events of yellow sand phenomena, have been measured and analyzed by using Andersen air sampler for four years, January 1982 through December 1985. The conclusions are as follows: 1. Yellow sand phenomena, generally, occur between March and May. 2. The frequent occurrences of yellow sand were observed during March and April and airborne suspended particulate concentrations in the cases of yellow sand appeared to be 2 $\sim$ 3.4 times higher than those of normal conditions. 3. Geometric mean particle diameter and its geometric mean standard deviation by logarithmic normal distribution sheet, were quite close to each other and log-distribution curves showed similar shapes. 4. Analysis by particle size distribution curve showed bi-modal distribution. 5. Concentrations of coarse particles in normal conditions were 1.2 $\sim$ 2 times higher than those of fine particles and, similarly, coarse particle concentrations in yellow sand cases were 1.3 $\sim$ 2.5 times higher than those of fine particles. 6. Concentrations of coarse particles in yellow sand cases were 2 $\sim$ 3.6 times higher than those in normal conditions and those of fine particles were 1.7 $\sim$ 3.5 times higher.

  • PDF

An Experimental Study on the Characteristics of Direct Photoelectric Charging (직접 광대전의 대전특성에 관한 실험적 연구)

  • Lee, Chang-Sun;Kim, Yong-Jin;Kim, Sang-Sao
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.6
    • /
    • pp.753-759
    • /
    • 2000
  • Photoelectric charging is a very efficient way of charging small particles. This method can be applied to combustion measurement, electrostatic precipitator, metal separation and control of micro-contamination. To understand the photoelectric charging mechanism, particle charging of silver by exposure to ultraviolet is investigated in this study. Average charges and charge distributions are measured at various conditions, using two differential mobility analyzers, a condensation nucleus counter, and an aerosol electrometer. The silver particles are generated in a spark discharge aerosol generator. After that process, the generated particles are charged in the photoelectric charger using low-pressure mercury lamp that emits ultraviolet having wavelength 253.7 nm. The results show that ultra-fine particles are highly charged by the photoelectric charging. The average charges linearly increase with increasing particle size and the charge distribution change with particle size. These results are discussed by comparison with previous experiments and proposed equations. It is assumed that the coefficient of electron emission probability is affected by initial charge. The results also show that the charge distribution of a particle is dependent on initial charge. Single changed particle, uncharged particle and neutralized particle are compared. The differences of charge distribution in each case increase with increasing particle size.

Effect of Particle Size of Forage in the Dairy Ration on Feed Intake, Production Parameters and Quantification of Manure Index

  • Moharrery, A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.4
    • /
    • pp.483-490
    • /
    • 2010
  • The objectives of this study were to measure particle size and evaluate the effect of increasing alfalfa hay particle size on production characteristics in lactating Holstein dairy cows. Ninety multiparous Holstein cows in early to mid-lactation were randomly assigned in a complete randomized design for a 30-day period. Animals were offered one of the three diets, which were identical in energy, protein, and chemical composition, but differed only in particle size of alfalfa hay. The treatments were A) total mixed ration (TMR) in which only fine chopped alfalfa hay was incorporated in the ration, B) the same diet in which half of the alfalfa hay was fine chopped and incorporated in the mixed ration and half was long hay and offered as a top dressing, and C) the same diet with long hay alfalfa offered as a top dressing. Distribution of particle size of rations was determined through 20,000, 8,000 and 1,000 ${\mu}m$ sieves. The new method of quantitative determination of manure index was examined for each cow on different treatments. The geometric mean length of particle size in the rations was 5,666, 9,900 and 11,549 ${\mu}m$ for treatments A, B and C, respectively. Fat corrected milk (4%), milk fat percentage and production were significantly different (p<0.05) in treatment A versus B and C (fat corrected milk (FCM, 4%)) 28.3 vs. 35.2 and 32.3 kg/d, fat percentage 2.89, 4.04 and 3.62; but the change of ration particle size had no significant effect on milk production (p>0.05). Blood concentration of cholesterol in treatment A was significantly higher (p<0.05) than treatment B and C (181.0 vs. 150.0 and 155.2 mg/dl). Manure index in treatment C was significantly different (p<0.05) from treatment B (15.86 vs. 17.67). Based on these experimental findings, it is concluded that an increase in the ration particle size can increase milk fat percentage due to providing more physically effective fiber, which in turn could effect changes in manure consistency.