• Title/Summary/Keyword: fine line

Search Result 460, Processing Time 0.031 seconds

Emission Characteristics of Elemental Constituents in Fine Particulate Matter Using a Semi-continuous Measurement System (준 실시간 측정시스템을 이용한 미세입자 원소성분 배출특성 조사)

  • Park, Seung-Shik;Ondov, John M.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.2
    • /
    • pp.190-201
    • /
    • 2010
  • Fine particulate matter < $1.8{\mu}m$ was collected as a slurry using the Semicontinuous Elements in Aerosol Sampler with time resolution of 30-min between May 23 and 27, 2002 at the Sydney Supersite, Florida, USA. Concentrations of 11 elements, i.e., Al, As, Cd, Cr, Cu, Fe, Mn, Ni, Pb, Se, and Zn, in the collected slurry samples were determined off-line by simultaneous multi-element graphite furnace atomic absorption spectrometry. Temporal profiles of $SO_2$ and elemental concentrations combined with meteorological parameters such as wind direction and wind speed indicate that some transient events in their concentrations are highly correlated with the periods when the plume from an animal feed supplement processing facility influenced the Sydney sampling site. The peaking concentrations of the elemental species during the transient events varied clearly as the plume intensity varied, but the relative concentrations for As, Cr, Pb, and Zn with respect to Cd showed almost consistent values. During the transient events, metal concentrations increased by factors of >10~100 due to the influence of consistent plumes from an individual stationary source. Also the multi-variate air dispersion receptor model, which was previously developed by Park et al. (2005), was applied to ambient $SO_2$ and 8 elements (Al, As, Cd, Cr, Cu, Fe, Pb, and Zn) measurements between 20:00 May 23 and 09:30 May 24 when winds blew from between 70 and $85^{\circ}$, in which animal feed processing plant is situated, to determine emission and ambient source contributions rates of $SO_2$ and elements from one animal feed processing plant. Agreement between observed and predicted $SO_2$ concentrations was excellent (R of 0.99; and their ratio, $1.09{\pm}0.35$) when one emission source was used in the model. Average ratios of observed and predicted concentrations for As, Cd, Cr, Pb, and Zn varied from $0.83{\pm}0.26$ for Pb to $1.12{\pm}0.53$ for Cd.

Non-coherent TOA Estimation Method based on IR-UWB in Multiple SOP Environments (다중 SOP 환경하에서 IR-UWB 기반의 Non-coherent TOA 추정 기법)

  • Park, Woon-Yong;Park, Cheol-Ung;Choi, Sung-Soo;Lee, Won-Cheol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.11A
    • /
    • pp.1086-1095
    • /
    • 2007
  • This paper proposes a novel non-coherent TOA estimation scheme using multiple correlation process on the existence of multiple simultaneously operating piconets (SOPs). Impulse radio-ultra wideband (IR-UWB) based on direct sequence spread spectrum (DSSS) using Gold sequence is employed in order to discriminate each piconet. In order to enhance the characteristic of correlation, this paper presents the method of multiple mask operation (MMO). The time of arrival (TOA) of direct line of sight (DLOS) path is estimated via two step coarse/fine timing detection. To verify the performance of proposed scheme, two distinct channel models approved by IEEE 802.15.4a Task Group (TG) are considered. According to the simulation results, it could conclude that the proposed scheme have performed better performance than the conventional method well even in densed indoor multi-path environment as well as in the existence of multiple SOPs.

Formation of Fine Pitch Solder Bumps on Polytetrafluoroethylene Printed Circuit Board using Dry Film Photoresist (Dry Film Photoresist를 이용한 테프론 PCB 위 미세 피치 솔더 범프 형성)

  • 이정섭;주건모;전덕영
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.11 no.1
    • /
    • pp.21-28
    • /
    • 2004
  • We have demonstrated the applicability of dry film photoresist (DFR) in photolithography process for fine pitch solder bumping on the polytetrafluoroethylene (PTFE/Teflon ) printed circuit board (PCB). The copper lines were formed with 100$\mu\textrm{m}$ width and 18$\mu\textrm{m}$ thickness on the PTFE test board, and varying the gaps between two copper lines in a range of 100-200$\mu\textrm{m}$. The DFRs of 15$\mu\textrm{m}$ thickness were laminated by hot roll laminator, by varying laminating temperature from $100{\circ}C$ to 15$0^{\circ}C$ and laminating speed from 0.28-0.98cm/s. We have found the optimum process of DFR lamination on PTFE PCB and accomplished the formation of indium solder bumps. The optimum lamination condition was temperature of $150^{\circ}C$ and speed of about 0.63cm/s. And the smallest size of indium solder bump was diameter of 50$\mu\textrm{m}$ with pitch of 100$\mu\textrm{m}$.

  • PDF

Electrohydrodynamic Inkjet Printing System for Ultrafine Patterning (초정밀 미세 패턴을 위한 전기 수력학 잉크젯 프린팅 시스템)

  • Roh, Hyeong-Rae;Go, Jung-Kook;Kwon, Kye-Si
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.9
    • /
    • pp.873-877
    • /
    • 2013
  • The application of inkjet technology has been broadening from home printers to manufacturing tools. Recently, there have been demands for high-resolution printing, especially in the field of printed electronics applications. To improve upon the conventional inkjet printing patterning method, electrohydrodynamic (EHD) inkjet technology has recently attracted attention because droplets smaller than the nozzle diameter can be ejected and materials with wider viscosity range can be used for jetting. In this study, an EHD jet printing system for fine patterning is presented. To print various patterns based on drop on demand printing, vector and raster printing algorithm are implanted in the printing software. Fine conductive patterns with line width of less than $7{\mu}m$ can be easily achieved via EHD jet using a nozzle with inner diameter of $8{\mu}m$.

Heterogeneous Device Packaging Technology for the Internet of Things Applications (IoT 적용을 위한 다종 소자 전자패키징 기술)

  • Kim, Sarah Eunkyung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.3
    • /
    • pp.1-6
    • /
    • 2016
  • The Internet of Things (IoT) is a new technology paradigm demanding one packaged system of various semiconductor and MEMS devices. Therefore, the development of electronic packaging technology with very high connectivity is essential for successful IoT applications. This paper discusses both fan-out wafer level packaging (FOWLP) and 3D stacking technologies to achieve the integrattion of heterogeneous devices for IoT. FOWLP has great advantages of high I/O density, high integration, and design flexibility, but ultra-fine pitch redistribution layer (RDL) and molding processes still remain as main challenges to resolve. 3D stacking is an emerging technology solving conventional packaging limits such as size, performance, cost, and scalability. Among various 3D stacking sequences wafer level via after bonding method will provide the highest connectivity with low cost. In addition substrates with ultra-thin thickness, ultra-fine pitch line/space, and low cost are required to improve system performance. The key substrate technologies are embedded trace, passive, and active substrates or ultra-thin coreless substrates.

A Review of Experimental Evaluation Method to Floor Environment Vibration Criteria for Semiconductor and Display Equipment (반도체·디스플레이 장비용 바닥 환경진동허용규제치의 실험적 평가방법 고찰)

  • An, Chae Hun;Choi, Jeong Hee;Park, Joon Soon;Park, Min Su
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.1
    • /
    • pp.25-31
    • /
    • 2021
  • The semiconductor and display equipment demands an ultra-fine precision of several nm to several ㎛, and the scale is getting smaller due to the explosive development. The manufacturing process equipment for such products with ultra-fine precision is very sensitive to ultra-small vibrations flowing from the floor, resulting in problems of production defects and yield degradation. The vibration criteria are a standard that regulates the vibration environment of the floor where such precision process equipment will be installed. The BBN vibration criteria defined the allowable vibration velocity level in the frequency domain with a flat and inclined line and presented a rating according to it. However, the actual vibration criteria have appeared with various magnitudes in the frequency domain according to the dynamic characteristics of individual equipment. In this study, the relationship between the relative motion of two major points in the equipment and the vibration magnitude of the floor is presented using the frequency response function of a simple 3-DOF model. It is describing the magnitudes according to the frequency of the floor vibration that guarantees the allowable relative motion and this can be used as the vibration criteria. In order to obtain the vibration criteria experimentally a method of extracting through a modal test was introduced and verified analytically. It provides vulnerable frequency and magnitude to floor vibration in consideration of the dynamic characteristics of individual equipment. And it is possible to know necessary to improve the dynamic characteristics of the equipment, and it can be used to check the vibration compatibility of the place where the equipment will be installed.

Percutaneous Ultrasound-Guided Fine-Needle Aspiration Cytology and Core-Needle Biopsy for Laryngeal and Hypopharyngeal Masses

  • Dongbin Ahn;Gil Joon Lee;Jin Ho Sohn;Jeong Eun Lee
    • Korean Journal of Radiology
    • /
    • v.22 no.4
    • /
    • pp.596-603
    • /
    • 2021
  • Objective: To evaluate the feasibility and diagnostic performance of ultrasound (US)-guided fine-needle aspiration cytology and core-needle biopsy (US-FNAC/CNB) for the diagnosis of laryngo-hypopharyngeal masses. Materials and Methods: This was a single-center prospective case series. From January 2018 to June 2019, we initially enrolled 40 patients with highly suspicious laryngo-hypopharyngeal masses on laryngoscopic examinations. Of these, 28 patients with the mass involving or abutting the pre-epiglottic, paraglottic, pyriform sinus, and/or subglottic regions were finally included. These patients underwent US examinations with/without subsequent US-FNAC/CNB under local anesthesia for evaluation of the laryngo-hypopharyngeal mass. Results: Of the 28 patients who underwent US examinations, a laryngo-hypopharyngeal mass was identified in 26 patients (92.9%). US-FNAC/CNB was performed successfully in 25 of these patients (96.2%), while the procedure failed to target the mass in 1 patient (3.8%). The performance of US caused minor subclinical hematoma in 2 patients (7.7%), but no major complications occurred. US-FNAC/CNB yielded conclusive results in 24 (96.0%) out of the 25 patients with a successful procedure, including 23 patients with squamous cell carcinoma (SCC) and 1 patient with a benign mass. In one patient with atypical cells in US-FNAC, additional direct laryngoscopic biopsy (DLB) was required to confirm SCC. Among the 26 patients who received US-FNAC/CNB, the time from first visit to pathological diagnosis was 7.8 days. For 24 patients finally diagnosed with SCC, the time from first visit to the initiation of treatment was 25.2 days. The mean costs associated with US-FNAC/CNB was $272 under the Korean National Health Insurance Service System. Conclusion: US-FNAC/CNB for a laryngo-hypopharyngeal mass is technically feasible in selected patients, providing good diagnostic performance. This technique could be used as a first-line diagnostic modality by adopting appropriate indications to avoid general anesthesia and DLB-related complications.

Analysis and Reference Significance of Mo Youzhi's Letter (모유지의 예서 해석 및 참고 의의)

  • Zhang, Guoxin
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.2
    • /
    • pp.67-71
    • /
    • 2024
  • Mo Youzhi (1811-1871) was a famous scholar, poet and calligrapher in the late Qing Dynasty. Mo Youzhi's life was rich in experience and broad vision, especially during his ten years in the Shogunate of the Tsengoku Domain, and he made friends with many political and cultural elites. Mo Youzhi is talented and diligent, and has a good relationship with celebrities from all walks of life at that time, so that his talents have been fully demonstrated. In the Qing Dynasty, the study of calligraphy became the absolute dominant force in the world of calligraphy, and the first great prosperity occurred after the Qin and Han dynasties. In accordance with the times, Mo Youzhi devotes himself to learning, takes into account the calligraphy, and goes out on his own path. Moe's work seal, li, kai, line, especially fine seal. Based on its Lishu, this paper expounds its typical style and atypical style respectively, and also discusses the relationship between its Lishu and other fonts. Finally, the author briefly summarizes the significance of Li Shu for the creation of contemporary Li Shu.In the course of discussion, always based on calligraphy ink, consult the relevant literature, combined with Mo Youzhi's life experience, try to be objective and fair, the listed points of view can be based on.

The Painting of Impressionism on the Modern Fashion (현대 의상에 표현된 인상주의 회화 양식)

  • 이효진;정흥숙
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.18 no.1
    • /
    • pp.65-80
    • /
    • 1994
  • In the 20th century, The artistic world was constantly producing new ideas and movements and the world of fashion responded to and reflected them all in greater of lesser degree. Dress designers have always been aware of what is happening In the arts and have always been able to use the discoveries and ideas of the artist to help them solve design problems and create fashion which are new, inventive and reflective of thier time. Up to the present, other researchers have investigated the connections between the fine arts and the Modern Fashion. In this respect, the objective of this research was to clarify the characteristics of painting of the Impressionism on the Modern Fashion. In order to investigate the relationship between the trend of painting and Modern Fashion. Especially, Impressionism's light and color affected both 20th's painting and other sorts of art. That is, the trend of the modern painting, Fauvism, Cubism, Surrealism, Abstract art, Abstract Expressionism, was influenced by Impressionism painting. Similarly, in the sihouette, line, color, fabric pattern of the Modem Fashion was represented characteristics of the Impressionism Painting. The fashion's Fauve, Paul Poiret was excited by the power of color in the same intense way as the 'wild beasts' of art. The color of his clothes during that period was bold and brilliant. Gabrielle Chanel simplified the shape of women's clothes to a square cardigan and rectangular skirt. This was a cubist concept. Art and fashion probably held hands closest in the 1930s, when Elsa Schiaparelli was creating clothes directly influenced by the Surrealist thinking of Salvador Dali. And she burst upon the fashion world with a sweater that had a trompe I'oeil bow. Soma Delaunay was one of great pioneers of Abstract in. She proceeded to mix strong and bright colors into her art and created the geometric and abstract patterns of the clothes and fabrics with her strong color. The influence of Abstract Expressionism was expressed the fabrics of the Modern Fashion. Some fabrics used in Modern Fashion are printed in a dripping pouring and splashing style. For the future, some futher research to investigate the art-fashion connection might involve establishing systematic classifications for silhouette, line, texture, color of the fashion. Moreover, in order to study the influence of fine art on the fashion, a broader approach might wish to analyze the relationship between painting and other plastic arts.

  • PDF

Opticla Angle Sensor Using Pseudorandom-code And Geometry-code (슈도 랜덤 코드와 기하학 코드를 이용한 광학적 Angle Sensor)

  • 김희성;도규봉
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.2
    • /
    • pp.27-32
    • /
    • 2004
  • Absolute optical angle sensor is described that is an essentially digital opto-electronic device. Its purpose is to resolve the relative and absolute angle position of coded disk using Pseudorandom-code and Geometry-code. In this technique, the angular position of disk is determined in coarse sense first by Pseudorandom-code. A further fine angular position data based on Pixel count is obtained by Geometry-code which result 0.006$^{\circ}$ resolution of the system provided that 7 ${\mu}{\textrm}{m}$ line image sensor are used. The proposed technique is novel in a number of aspects, such that it has the non-contact reflective nature, high resolution of the system, relatively simple code pattern, and inherent digital nature of the sensor. And what is more the system can be easily modified to torque sensor by applying two coded disks in a manner that observe the difference in absolute angular displacement. The digital opto-electronic nature of the proposed sensor, along with its reporting of both torque and angle, makes the system ideal for use in intelligent vehicle systems. In this communication, we propose a technique that utilizes Pseudorandom-code and Geometry-code to determine accurate angular position of coded disk. We present the experimental results to demonstrate the validity of the idea.