• Title/Summary/Keyword: fine ion exchange fiber

Search Result 2, Processing Time 0.017 seconds

Synthesis of Sulfonated PET-g-GMA Fine Ion-exchange Fibers for Water Treatment by Photopolymerization and Their Adsorption Properties for Metal Ions (광중합법을 이용한 수처리용 설폰산형 PET-g-GMA 극세 이온 교환 섬유의 합성 및 금속 이온 흡착 특성)

  • Kwak Noh-Seok;Hwang Taek-Sung;Kim Sun-Mi;Yang Yun-Kyu;Kang Kyung-Seok
    • Polymer(Korea)
    • /
    • v.28 no.5
    • /
    • pp.397-403
    • /
    • 2004
  • The sulfonated PET-g-GMA ion-exchange fine fibers were synthesized by UV radiation-induced graft copolymerization using a photoinitiator, and their chemical structure and adsorption properties were investigated. The optimum values for synthetic conditions - UV intensity, reaction time, and reaction temperature were 450 W, 60 min, and $40^{\circ}C$, respectively. Maximum values of the degree of sulfonation and ion exchange capacity were 8.12 mmol/g and 3.25 meq/g, respectively. Tensile strength of sulfonated PET-g-GMA fine ion exchange fibers was lower than that of PET trunk polymer as the grafting reaction rates increased. It was shown that as for the adsorption rate of $Ca^{2+}$ and $Mg^{2+}$ by the sulfonated PET-g-GMA fine ion exchange fibers, magnesium ion is slower than calcium ion in the solution. However, in the mixture of the calcium and magnesium ions, the adsorption rate of calcium ion was much slower than that of magnesium ion.

Synthesis of High Affinity Anion Exchanger Using Ultrafine Fibrous PPmb Nonwoven Fabric by Co60 Irradiation Method (방사선 조사에 의한 초극세 폴리프로필렌 섬유부직포를 이용한 고효율 음이온교환체의 합성)

  • Choi, Kuk-Jong;Lee, Choul-Ho;Hwang, Taek-Sung
    • Polymer(Korea)
    • /
    • v.32 no.6
    • /
    • pp.509-515
    • /
    • 2008
  • The aminated polypropylene melt blown ion exchange fibers were synthesized with acrylic acid monomer onto polypropylene melt blown fibers by radiation-induced polymerization and subsequent amination. Degree of grafting was increased with increasing the acrylic acid monomer concentration and total dose. The highest degree of grafting was obtained 140% at a monomer concentration of 20 v/v% acrylic acid and total dose of 4 kGy. Optimum condition of Mohr's salt was 5.0 $\times10^{-3}$ M. Degree of amination was increased with increasing degree of grafting. Water content was about 1.5 times higher than that of trunk polymer. The maximum ion-exchange capacity was 7.3 meq/g which was 2$\sim$3 times higher than a commercial ion exchange fiber. The average pore size was decreased and BET surface area was increased in order of PPmb, PPmb- g- AAc and APPmb- g- AAc. The average pore size and BET surface area of synthesised fibers were $366.1\;{\AA},\;3.71m^2/g,\;143.3\;{\AA},\;4.94m^2/g,\;40.97\;{\AA},\;8.98m^2/g$, respectively.