• 제목/요약/키워드: fine grained recognition

검색결과 14건 처리시간 0.024초

객체 분리 및 인코딩을 이용한 애완동물 영상 세부 분류 인식 (Fine grained recognition of breed of animal from image using object segmentation and image encoding)

  • 김지혜
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2018년도 추계학술대회
    • /
    • pp.536-537
    • /
    • 2018
  • 본 논문은 개와 고양이에 해당하는 애완동물 영상에서 세부 분류인 동물의 종을 인식하는 것을 목표로 한다. 영상의 세부 분류 인식에 대한 연구는 계속적으로 발전하고 있지만, 다형성의 성질을 갖는 동물에 대한 객체인식 연구는 더디게 진행되고 있다. 본 논문에서는 객체 분리를 위해 Grab-cut 알고리즘을 이용하고, 영상 인코딩을 위해 Fisher Vector를 이용하여 더 높은 동물 객체인식 방법을 제안한다.

  • PDF

영상 처리와 CNN을 이용한 애완동물 영상 세부 분류 비교 (Comparison of Fine Grained Classification of Pet Images Using Image Processing and CNN)

  • 김지혜;고정환;권철희
    • 방송공학회논문지
    • /
    • 제26권2호
    • /
    • pp.175-183
    • /
    • 2021
  • 영상의 세부 분류에 대한 연구는 계속적으로 발전하고 있지만, 다형성의 성질을 갖는 동물에 대한 객체인식 연구는 더디게 진행되고 있다. 본 논문은 개와 고양이에 해당하는 애완동물 이미지만을 이용하여, 세부 분류인 동물의 종을 분류하는 방법 중 영상처리를 이용한 방법과 딥러닝을 이용한 방법을 비교하는 것을 목표로 한다. 본 논문에서 영상처리를 이용한 방법으로 객체 분리를 위해 Grab-cut 알고리즘을 사용하고, 영상 인코딩을 위해 Fisher Vector를 사용한 방법을 제안한다. 다른 방법으로는 기계학습으로 여러 분야에서 좋은 성과를 얻고 있는 딥러닝을 이용하였으며, 그 중에서도 이미지 인식 분야에서 뛰어난 성능을 보인 Convolutional Neural Network(CNN)과 구글에서 제공하는 오픈소스 기반 딥러닝 프레임워크인 Tensorflow를 활용하였다. 제안하는 각각의 방법에 대해 37종의 애완동물 이미지, 총 7,390장에 대해 실험하여 그 효과를 검증 및 비교하였다.

MixFace: Improving face verification with a focus on fine-grained conditions

  • Junuk Jung;Sungbin Son;Joochan Park;Yongjun Park;Seonhoon Lee;Heung-Seon Oh
    • ETRI Journal
    • /
    • 제46권4호
    • /
    • pp.660-670
    • /
    • 2024
  • The performance of face recognition (FR) has reached a plateau for public benchmark datasets, such as labeled faces in the wild (LFW), celebrities in frontal-profile in the wild (CFP-FP), and the first manually collected, in-the-wild age database (AgeDB), owing to the rapid advances in convolutional neural networks (CNNs). However, the effects of faces under various fine-grained conditions on FR models have not been investigated, owing to the absence of relevant datasets. This paper analyzes their effects under different conditions and loss functions using K-FACE, a recently introduced FR dataset with fine-grained conditions. We propose a novel loss function called MixFace, which combines classification and metric losses. The superiority of MixFace in terms of effectiveness and robustness was experimentally demonstrated using various benchmark datasets.

Classifying Articles in Chinese Wikipedia with Fine-Grained Named Entity Types

  • Zhou, Jie;Li, Bicheng;Tang, Yongwang
    • Journal of Computing Science and Engineering
    • /
    • 제8권3호
    • /
    • pp.137-148
    • /
    • 2014
  • Named entity classification of Wikipedia articles is a fundamental research area that can be used to automatically build large-scale corpora of named entity recognition or to support other entity processing, such as entity linking, as auxiliary tasks. This paper describes a method of classifying named entities in Chinese Wikipedia with fine-grained types. We considered multi-faceted information in Chinese Wikipedia to construct four feature sets, designed different feature selection methods for each feature, and fused different features with a vector space using different strategies. Experimental results show that the explored feature sets and their combination can effectively improve the performance of named entity classification.

Prosodic Strengthening in Speech Production and Perception: The Current Issues

  • Cho, Tae-Hong
    • 음성과학
    • /
    • 제14권4호
    • /
    • pp.7-24
    • /
    • 2007
  • This paper discusses some current issues regarding how prosodic structure is manifested in fine-grained phonetic details, how prosodically-conditioned articulatory variation is explained in terms of speech dynamics, and how such phonetic manifestation of prosodic structure may be exploited in spoken word recognition. Prosodic structure is phonetically manifested in prosodically important landmark locations such as prosodic domain-final position, domain-initial position and stressed/accented syllables. It will be discussed how each of the prosodic landmarks engenders particular phonetic patterns, ow articulatory variation in such locations are dynamically accounted for, and how prosodically-driven fine-grained phonetic detail is exploited by listeners in speech comprehension.

  • PDF

Tensorflow를 이용한 애완동물 영상 세부 분류 (Fine grained recognition on a species of animal from image using Tensorflow)

  • 김지혜
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2020년도 하계학술대회
    • /
    • pp.684-685
    • /
    • 2020
  • 영상의 세부 분류 인식에 대한 연구는 계속적으로 발전하고 있지만, 다형성의 성질을 갖는 동물에 대한 객체인식 연구는 더디게 진행되고 있다. 본 논문은 개와 고양이에 해당하는 애완동물 이미지만을 이용하여, 세부 분류인 동물의 종을 분류하는 것을 목표로 한다. 이를 위해 본 논문에서는 기계학습으로 여러 분야에서 좋은 성과를 얻고 있는 딥러닝을 이용하였으며, 그 중에서도 이미지 인식 분야에서 뛰어난 성능을 보인 Convolutional Neural Network(CNN)과 구글에서 제공하는 오픈소스 기반 딥러닝 프레임워크인 Tensorflow를 활용하였다. 제안하는 방법에 대해 37종의 애완동물 이미지, 총 7390장에 대하여 학습 및 실험하여 그 효과를 검증하였다.

  • PDF

Human Action Recognition Using Deep Data: A Fine-Grained Study

  • Rao, D. Surendra;Potturu, Sudharsana Rao;Bhagyaraju, V
    • International Journal of Computer Science & Network Security
    • /
    • 제22권6호
    • /
    • pp.97-108
    • /
    • 2022
  • The video-assisted human action recognition [1] field is one of the most active ones in computer vision research. Since the depth data [2] obtained by Kinect cameras has more benefits than traditional RGB data, research on human action detection has recently increased because of the Kinect camera. We conducted a systematic study of strategies for recognizing human activity based on deep data in this article. All methods are grouped into deep map tactics and skeleton tactics. A comparison of some of the more traditional strategies is also covered. We then examined the specifics of different depth behavior databases and provided a straightforward distinction between them. We address the advantages and disadvantages of depth and skeleton-based techniques in this discussion.

A Robust and Device-Free Daily Activities Recognition System using Wi-Fi Signals

  • Ding, Enjie;Zhang, Yue;Xin, Yun;Zhang, Lei;Huo, Yu;Liu, Yafeng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권6호
    • /
    • pp.2377-2397
    • /
    • 2020
  • Human activity recognition is widely used in smart homes, health care and indoor monitor. Traditional approaches all need hardware installation or wearable sensors, which incurs additional costs and imposes many restrictions on usage. Therefore, this paper presents a novel device-free activities recognition system based on the advanced wireless technologies. The fine-grained information channel state information (CSI) in the wireless channel is employed as the indicator of human activities. To improve accuracy, both amplitude and phase information of CSI are extracted and shaped into feature vectors for activities recognition. In addition, we discuss the classification accuracy of different features and select the most stable features for feature matrix. Our experimental evaluation in two laboratories of different size demonstrates that the proposed scheme can achieve an average accuracy over 95% and 90% in different scenarios.

계층적 레이블 임베딩을 이용한 세부 분류 개체명 인식 (Fine-grained Named Entity Recognition using Hierarchical Label Embedding)

  • 김홍진;김학수
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2021년도 제33회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.251-256
    • /
    • 2021
  • 개체명 인식은 정보 추출의 하위 작업으로, 문서에서 개체명에 해당하는 단어를 찾아 알맞은 개체명을 분류하는 자연어처리 기술이다. 질의 응답, 관계 추출 등과 같은 자연어처리 작업에 대한 관심이 높아짐에 따라 세부 분류 개체명 인식에 대한 수요가 증가했다. 그러나 기존 개체명 인식 성능에 비해 세부 분류 개체명 인식의 성능이 낮다. 이러한 성능 차이의 원인은 세부 분류 개체명 데이터가 불균형하기 때문이다. 본 논문에서는 이러한 데이터 불균형 문제를 해결하기 위해 대분류 개체명 정보를 활용하여 세부 분류 개체명 인식을 수행하는 방법과 대분류 개체명 인식의 오류 전파를 완화하기 위한 2단계 학습 방법을 제안한다. 또한 레이블 주의집중 네트워크 기반의 구조에서 레이블의 공통 요소를 공유하여 세부 분류 개체명 인식에 효과적인 레이블 임베딩 구성 방법을 제안한다.

  • PDF