• Title/Summary/Keyword: fine grain

Search Result 856, Processing Time 0.031 seconds

Study for Prediction of Strain Distribution in Heavy Plate Rolling (후판압연에 있어서의 변형률 분포예측에 관한 연구)

  • Moon, C.H.;Lee, D.M.;Park, H.D.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.96-99
    • /
    • 2007
  • The microstructure with fine and uniform AGS(austenite grain size) along thickness direction over no recrystallization temperature is strongly required for production of the high strength steels. The previous AGS prediction only based on the average strain improves to find the rolling conditions for accomplishment of the fine grain, but cannot find those for uniform grain. In this paper, an integrated mathematical model for prediction of the strain distribution along thickness direction is developed by carrying out finite element simulation for a series of rolling conditions. Also, the AGS distribution after rough rolling is predicted by applying the proposed model with AGS prediction model.

  • PDF

Influence of Fine Aggregate Kinds on Fundamental Properties of Cement Mortar (잔골재 종류변화가 시멘트 모르터의 기초적 특성에 미치는 영향)

  • Kim, Seong-Hwan;Pei, Chang-Chun;Song, Seung-Heon;Cha, Cheon-Soo;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2006.05a
    • /
    • pp.85-88
    • /
    • 2006
  • This study investigated influence of fine aggregate types on fundamental properties of cement mortar. Test showed that concrete using lime stone crushed fine aggregate(L) exhibited the most favorable fluidity due to grain shape and particle distribution, and next was blending aggregate miting L and G, blending aggregate mixing L and N, granite crushed fine aggregate(G), natural fine aggregate(N) in an order. Concrete using N had the highest air content and L was the smallest value because of the effective filling performance by continuos particle distribution. Compressive, tensile and flexural strength of all concrete using L had the highest value due to the smallest value of air content. It is also found that concrete using L resulted in decrease of drying shrinkage length change ratio.

  • PDF

Combination of MCA and SHS for Material Synthesis

  • Soh, Dea-Wha;N., Korobova
    • Journal of the Speleological Society of Korea
    • /
    • no.78
    • /
    • pp.1-8
    • /
    • 2007
  • The combination of mechano-chemical activation (MCA)and Self-propagating High-temperature Synthesis (SHS) has widened the technical possibilities for both methods. For YBCO systems the investigation showed that a short-term MCA of initial powders before SHS leads to single-phase and ultra-fine products. A new technique for preparation ultra-fine high-temperature superconductors (HTS) of YBCO composition with a grain size d <1m is developed using combination of MCA and SHS. The specific feature of the technique is formation of the $YBa_2Cu_3O_7-$ crystalline lattice directly from an X-ray amorphous state arising as a result of mechanical activation of the original oxide mixture. The technique allows the stage of formation of any intermediate reaction products to be ruled out. X-ray and magnetic studies of ultra-fine high temperature superconductors are carried out. Dimension effects associated with the microstructure peculiarities are revealed. A considerable enhancement of inter-grain critical currents is found to take place in the ultra-fine samples.

Resistance to Airflow of Grain as Affected by Grain Moisture Content (곡물(穀物)의 함수율(含水率) 변화(變化)에 따른 송풍저항(送風抵抗)에 관(關)한 연구(硏究))

  • Kim, M.S.;Kim, S.R.
    • Journal of Biosystems Engineering
    • /
    • v.11 no.2
    • /
    • pp.55-65
    • /
    • 1986
  • The resistance to the passage of airflow through various agricultural products is an important consideration in the design of an aeration or drying system. The amount of resistance to airflow varied widely from one kind of grain to another, and depended upon airflow rate, surface texture and shape of the particles, the size and configuration of voids, and foreign and fine material in the grain bed. The airflow rate was the major factor considered on this kind of study in the early stages. But these days, the studies on the resistance to airflow of grain affected by grain moisture content and foreign and fine material have been widely carried out. However the foreign an fine material in the grain bed could not be a major factor on the study in Korea because there were only a few grain process procedure after harvesting it. The objectives of this study were to investigate the effect of moisture content and airflow rate on airflow resistance to grain, and to develop a model to predict the static pressure drop across the grain bed as a function of moisture content and airflow rate. The rough rice varieties, Akibare, Milyang 15 (Japonica types), Samkwang, Backyang (Indica types)and covered barley variety, Olbori, which were harvested in 1985 were used in the experiment after cleaning them. Resistances to airflow of grain were investigated at four levels of moisture content (13-25%, wb.) for ten different airflow rates($0.01-0.15m^3/sm^2$). The results of this study are summarized as follows; 1. Theaverage bulk densities were $585.3kg/m^3$ for rough rice and $691.6kg/m^3$ for barley at the loose fill, and were $648.8kg/m^3$ for rough rice and $758.2kg/m^3$ for barley at the packed fill. The pressure drops at the packed fill beds were approximately 1.4 to 1.8 times higher than those at the loose fill beds. 2. The pressure drops across grain beds deceased with the increase of moisture content and increased with airflow rate. The decreasing rates of pressure drop across grain beds according to the moisture contents at the lower airflow rates were higher than those at the higher airflow rates, and the increasing rates of pressure drop according to the airflow rates at the lower moisture contents were higher those at higher moisture contents. 3. The pressure drop across barley bed were much higher than rough rice beds and the pressure drops across Japonica type rough rice beds were a little higher than Indica type. 4. The mathematical models to predict the pressure drop across grain beds as a function of moisture content and airflow rate were developed from these experiments.

  • PDF

Computer Simulation of Sintering and Grain Growth

  • Matsubara, Hideaki
    • Journal of Powder Materials
    • /
    • v.5 no.4
    • /
    • pp.324-328
    • /
    • 1998
  • This paper is aimed to study the computer simulation of sintering process for ceramics by Monte Carlo and molecular dynamics methods. Plural mechanisms of mass transfer were designed in the MC simulation of sintering process for micron size particles; the transfer of pore lattices for shrinkage and the transfer of solid lattices for grain growth ran in the calculation arrays. The MD simulation was performed in the case of nano size particles of ionic ceramics and showed the characteristic features in sintering process at atomic levels. The MC and MD simulations for sintering process are useful for microstructural design for ceramics.

  • PDF

Effect of SiC Particle Size on Microstructure of $Si_3N_4/SiC$ Nanocomposites ($Si_3N_4/SiC$ 초미립복합체의 미세조직에 미치는 SiC 입자크기의 영향)

  • 이창주;김득중
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.2
    • /
    • pp.152-157
    • /
    • 2000
  • Si3N4/SiC nanocomposite ceramics containing 5 wt%dispersed SiC particles were prepared by gas-pressure-sintering at 200$0^{\circ}C$ under nitrogen atmosphere. SiC particles with average sizes of 0.2 and 0.5${\mu}{\textrm}{m}$ were used, and the effect of the SiC particle size on the microstructure was investigated. The addition of SiC particles effectively suppressed the growth of the Si3N4 matrix grains. The effect of grain growth inhibition was higher in the nanocomposites dispersed with fine SiC. SiC particles were dispersed uniformly inside Si3N4 matrix grains and on grain boundaries. When the fine SiC particles were added, large fraction of the SiC particles was trapped inside the grains. On the other hand, when the large SiC particles were added, most of the SiC particles were located on grain boundaries. Typically, the fraction of SiC particles located at grain boundaries was higher in the specimen prepared from $\beta$-Si3N4 than in the specimen prepared from $\alpha$-Si3N4.

  • PDF

The Properties of High Flowing Cement Mortar with the Content of Limestone Grain (석회석 미분말의 함유율 변화에 따른 고유동 모르터의 특성)

  • 조중동;전충근;조병영;장기영;한천구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.605-608
    • /
    • 1999
  • In this paper, the application of limestone grain, which produced by being gathered electrically in the process of manufacturing of cement, to high fluidity concrete are investigated. High fluidity mortar is used for this experiment. According to the experimental results, especially, high viscosity and the loss of air content are accomplished by applying limestone grain as the partial substitution of fine aggregates. In case of hardened mortar, high strength development at early age can be achieved by using limestone grain. But excessive dosage of limestone grain can cause high drying shrinkage.

  • PDF

The Effect of Plastic Strain on the Superplastic Deformation Behavior (초소성변형특성에 미치는 소성변형랴의 영향)

  • 권용남;장영원
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.03a
    • /
    • pp.291-293
    • /
    • 1997
  • The effect of strain accumulation on the superplastic deformation behavior has been investigated through a series of load relaxation tests. The experimental results were analyzed using the recently proposed inelastic constitutive theory. The superplastic deformation of fine grained materials is confirmed to consist of grain boundary sliding and accommodating grain matrix deformation. However the flow behavior is changed with the plastic strain. It is believed that the microstructural changes such as grain growth and cavitation affect the superplastic deformation behaviors.

  • PDF

Effect of Welding Condition on Microstructure of Transient Zone in Overlay Weld of 3Cr-1Mo Steel/STS-309L (3Cr-1Mo강/STS-309L 오버레이 용접부의 천이영역 조직에 미치는 용접조건의 영향)

  • 김동진;김병훈;지병하;김정태;김성곤;강정윤;박화순
    • Journal of Welding and Joining
    • /
    • v.18 no.2
    • /
    • pp.176-176
    • /
    • 2000
  • Recently developed Austenite stainless steel,309L was to overlay on 3Cr-1Mo-V-Ti-B steels, using Electroslag welding process, which wide electrodes were adopted. Transition region in welding interlayer relating to disbonding crack was investigated. Also. the effect of welding condition on the width of transition region and coarsening grains of the austenite were studied.1) With increasing welding speed the width of martensite at transient region was increased, but the amount of delta ferrite in weld metal was reduced, being fine grained.2) The form of martensite at the transition region was occured by reversible transition region, leading to increasing Ms point.3) With increasing welding speed, the grain of austenite formed at the welding interface was finer. With increasing welding current under the same welding speed, the grain size of the austenite was finer. At high current, original grain size of the austenite is coarse, but the austenite has fine grains because the austenite was transformed to martensite during cooling.4) In the case of high welding speed, the width of martensite at the welding interface was increased, but the grain size of austenite at the welding interface was finer. This indicates that the inhibition of disbonding crack may be achieved through dispersening fine carbides in the grain boudary.(Received August 3, 1999)

The Influence of Fineness Modulus of Pine Aggregate and Grain Shape of Coarse Aggregate on the Properties of High Flowing Concrete (잔골재 조립률 및 굵은골재 입형이 초유동 콘크리트의 특성에 미치는 영향)

  • Jung Yong-Wook;Lee Seung-han;Yun Yong-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.5 s.89
    • /
    • pp.785-792
    • /
    • 2005
  • This study is to examine the influence of defective grain shape of coarse aggregate and lowered fineness modulus of fine aggregate on the characteristics of high flowing concrete. The flow ability and compact ability of high flowing concrete was examined using fine aggregate, varying its fineness modulus to 2.0, 2.5, 3.0, and 3.5, and coarse aggregate with before and after grain shape improvement. Also the influence of fineness modulus of fine aggregate and grain shape of coarse aggregate on dispersion distance of particles of aggregate was examined by relatively comparing the dispersion distance between particles of aggregate. According to the experimental result, minimum porosity when mixing fine aggregate and coarse aggregate was shown in order of fineness modulus of fine aggregate, 3.0, 2.5, 2.0, 3.5, regardless of the improvement of grain shape. So when the fineness modulus is bigger or smaller than KS Standard $2.3\~3.1$, the porosity increased. When the spherical rate of the grain shape of coarse aggregate unproved from 0.69, a disk shape to 0.78 sphere shape, the rate of fine aggregate, which represents minimum porosity, decreased $6\%$ from $47\%\;to\;41\%$. The 28 days compressive strength according to fineness modulus of fine aggregate increased about 3 ma as the fineness modulus increased from 2.0 to 2,5, and 3.0. However, the 28 days compressive strength decreased about 9 ma at 3.5 fineness modulus as compared with 3.0 fineness modulus. The improvement of grain shape in coarse aggregate and increase of fineness modulus in fine aggregate made the flow ability, compact ability, and V-rod flowing time improve. Also the fineness modulus of fine aggregate increased the paste volume ratio when a higher value was used within the scope of KS Standard $2.3\~3.1$.