• Title/Summary/Keyword: fine alignment

Search Result 59, Processing Time 0.024 seconds

Effect of Void Formation on Shear Strength of Sand (모래 지반 내에 형성된 공극이 전단강도에 미치는 영향)

  • Choi, Hyun-Seok;Park, Sung-Sik;Kim, Chang-Woo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.577-583
    • /
    • 2010
  • In this study, the effect of void formation resulting from gas hydrate dissociation or loss of some particles within soil structure on the strength of soil is examined. Beag-ma river sands with uniform gradation were used to simulate a gas hydrate bearing or washable soil structure. Empty capsules for medicine are used to mimic large voids, which are bigger than soil particle. Beag-ma river sand was miced with 8% cement ratio and 14% water content and compacted into a shear box. The number and direction embedded into a specimen. After 4 hours curing, a series of direct shear test is performed on the capsule embedded cemented sands. Shear strength of cemented sands with capsules depends on the volume and direction. The volume and direction formed by voids are most important factors in strength. A shear strength of a specimen with large voids decreases up to 39% of a specimen without void. The results of this study can be used to predict the strength degradation of gas hydrate bearing sediments after dissociation and loss of fine particles within soil structure.

  • PDF

Effect of Hot Extrusion on the Mechanical Properties of 6061 Aluminum Alloy composites Reinforced with SiC whisker (SiC휘스커로 강화한 6061 Al합금 복합재료의 기계적 특성에 미치는 열간압출의 영향)

  • Kim, Jun-Su;Lim, Su-Geun
    • Journal of Korea Foundry Society
    • /
    • v.16 no.2
    • /
    • pp.132-140
    • /
    • 1996
  • Both cast and extruded composites of SiC whisker reinforced 6061 Al alloy matrix were fabricated by high pressure infiltration of the alloy melt into the SiC preform and subsequent hot extrusion of the composite ingots. The micro structures, age hardening behavior and mechanical properties have been examined on the both cast and extruded composites of SiCw/6061. The cast composites of SiCw/6061 were obtained in which SiC whiskers were randomly oriented. Hot extrusion of these cast composites lead to alignment of the whisker in the direction of extrusion. Strengthening effect of whisker in the extruded composites is lower than that of the cast composites. The cast composites of SiCw/6061 showed higher thensile strength and lower elongation than extruded composites of SiCw/6061 at all testing temperatures. Lower tensile strength and higher elongation of the extruded composites were attributable to fine grain structures in which grain boundary sliding occruued preferentially at elevated temperatures.

  • PDF

Synthesis and Characterization of TiO2/CuS Nanocomposite Fibers as a Visible Light-Driven Photocatalyst

  • An, HyeLan;Kang, Leeseung;Ahn, Hyo-Jin;Choa, Yong-Ho;Lee, Chan Gi
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.3
    • /
    • pp.267-274
    • /
    • 2018
  • $TiO_2/CuS$ nanocomposites were fabricated by precipitation of nanosized CuS via sonochemical method on electrospun $TiO_2$ nanofibers, and their structure, chemical bonding states, optical properties, and photocatalytic activity were investigated. In the $TiO_2/CuS$ nanocomposite, the position of the conduction band for CuS was at a more negative than that of TiO; meanwhile, the position of the valence band for CuS was more positive than those for TiO, indicating a heterojunction structure belonging to type-II band alignment. Photocatalytic activity, measured by decomposition of methylene blue under visible-light irradiation (${\lambda}$ > 400 nm) for the $TiO_2/CuS$ nanocomposite, showed a value of 85.94% at 653 nm, which represented an improvement of 52% compared to that for single $TiO_2$ nanofiber (44.97% at 653 nm). Consequently, the photocatalyst with $TiO_2/CuS$ nanocomposite had excellent photocatalytic activity for methylene blue under visible-light irradiation, which could be explained by the formation of a heterojunction structure and improvement of the surface reaction by increase in surface area.

Detailed Investigation on Factors Governing Liquid Crystal Alignment on Rubbed Polystyrene Films

  • Hahm, Seok-Gyu;Lee, Taek-Joon;Lee, Seung-Woo;Yoon, Jin-Hwan;Kim, Gha-Hee;Chang, Tai-Hyun;Ree, Moon-Hor
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.899-902
    • /
    • 2004
  • The molecular reorientations and surface morphologies of rubbed films formed from atactic polystyrene (PS) samples with various molecular weights were investigated in detail. Previously unknown surface topography features were newly discovered in rubbed films, depending on molecular weights: submicroscale groove-like meandering structures composed of fine-grooves like pebbles in tens nanometers are present, oriented perpendicular to the rubbing direction. The vinyl main chains, however, were preferentially reoriented along the rubbing direction and the planes of the phenyl side groups were preferentially reoriented perpendicular to the rubbing direction with para-directions that were positioned nearly normal to the film plane. Nematic liquid crystal (LC) molecules were found to always align on the rubbed PS surfaces along the orientation direction of the submicroscale grooves generated by rubbing.

  • PDF

Development Plan for the GMT Fast-steering Secondary Mirror

  • Lee, Sugnho;Han, Jeong-Yeol;Park, Chan;Jeong, Ueejeong;Yoon, Yang-noh;Song, Je Heon;Moon, Bongkon;Park, Byeong-Gon;Cho, Myung K.;Dribusch, Christoph;Park, Won Hyun;Jun, Youra;Yang, Ho-Soon;Moon, Il-Kwon;Oh, Chang Jin;Kim, Ho-Sang;Lee, Kyoung-Don;Bernier, Robert;Gardner, Paul;Alongi, Chris;Rakich, Andrew;Dettmann, Lee;Rosenthal, Wylie
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.66.3-67
    • /
    • 2016
  • The Giant Magellan Telescope (GMT) will feature two interchangeable Gregorian secondary mirrors, an adaptive secondary mirror (ASM) and a fast-steering secondary mirror (FSM). The FSM has an effective diameter of 3.2 m and built as seven 1.1 m diameter circular segments, which are conjugated 1:1 to the seven 8.4m segments of the primary. Each FSM segment contains a tip-tilt capability for fine co-alignment of the telescope subapertures and fast guiding to attenuate telescope wind shake and mount control jitter. This tip-tilt capability thus enhances performance of the telescope in the seeing limited observation mode. As the first stage of the FSM development, KASI conducted a Phase 0 study to develop a program plan detailing the design and manufacturing process for the seven FSM segments. The GMTO-KASI team matured this plan via an internal review in May 2016 and the revised plan was further assessed by an external review in June 2016. In this poster, we present the technical aspects of the FSM development plan.

  • PDF

Hybrid 'Sinta' Papaya Exhibits Unique ACC Synthase 1 cDNA Isoforms

  • Hidalgo, Marie-Sol P.;Tecson-Mendoza, Evelyn Mae;Laurena, Antonio C.;Botella, Jose Ramon
    • BMB Reports
    • /
    • v.38 no.3
    • /
    • pp.320-327
    • /
    • 2005
  • Five ripening-related ACC synthase cDNA isoforms were cloned from 80% ripe papaya cv. 'Sinta' by reverse transcription-PCR using gene-specific primers. Clone 2 had the longest transcript and contained all common exons and three alternative exons. Clones 3 and 4 contained common exons and one alternative exon each, while clone 1, the most common transcript, contained only the common exons. Clone 5 could be due to cloning artifacts and might not be a unique cDNA fragment. Thus, there are only four isoforms of ACC synthase mRNA. Southern blot analysis indicates that all five clones came from only one gene existing as a single copy in the 'Sinta' papaya genome. Multiple sequence alignment indicates that the four isoforms arise from a single gene, possibly through alternative splicing mechanisms. All the putative alternative exons were present at the 5'-end of the gene comprising the N-terminal region of the protein. 'Sinta' ACC synthase cDNAs were of the capacs 1 type and are most closely related to a 1.4 kb capacs 1-type DNA(AJ277160) from Eksotika papaya. No capacs 2-type cDNAs were cloned from 'Sinta' by RT-PCR. This is the first report of possible alternative splicing mechanism in ripening-related ACC synthase genes in hybrid papaya, possibly to modulate or fine-tune gene expression relevant to fruit ripening.

DEVELOPMENT OF LIGHTWEIGHT OPTICAL TELESCOPE KIT USING ALUMINUM PROFILE AND ISOGRID STRUCTURE

  • Park, Woojin;Lee, Sunwoo;Han, Jimin;Ahn, Hojae;Ji, Tae-Geun;Kim, Changgon;Kim, Dohoon;Lee, Sumin;Kim, Young-Jae;Kim, Geon-Hee;Kim, Junghyun;Kim, Ilhoon;Pak, Soojong
    • Journal of The Korean Astronomical Society
    • /
    • v.55 no.1
    • /
    • pp.11-22
    • /
    • 2022
  • We introduce the Transformable Reflective Telescope (TRT) kit that applies an aluminum profile as a base plate for precise, stable, and lightweight optical system. It has been utilized for optical surface measurements, developing alignment and baffle systems, observing celestial objects, and various educational purposes through Research & Education projects. We upgraded the TRT kit using the aluminum profile and truss and isogrid structures for a high-end optical test device that can be used for prototyping of precision telescopes or satellite optical systems. Thanks to the substantial aluminum profile and lightweight design, mechanical deformation by self-weight is reduced to maximum 67.5 ㎛, which is an acceptable misalignment error compared to its tolerance limits. From the analysis results of non-linear vibration simulations, we have verified that the kit survives in harsh vibration environments. The primary mirror and secondary mirror modules are precisely aligned within 50 ㎛ positioning error using the high accuracy surface finished aluminum profile and optomechanical parts. The cross laser module helps to align the secondary mirror to fine-tune the optical system. The TRT kit with the precision aluminum mirror guarantees high quality optical performance of 5.53 ㎛ Full Width at Half Maximum (FWHM) at the field center.

Digital Processability of Molds for Improvement of Work Efficiency in Special Makeup Sector - Focusing on FDM 3D printer - (특수분장 산업현장의 작업 능률 향상을 위한 몰드의 디지털 공정 가능성 -FDM 방식 3D printer를 중심으로-)

  • 김숭현
    • Journal of Investigative Cosmetology
    • /
    • v.15 no.1
    • /
    • pp.49-58
    • /
    • 2019
  • Special makeup companies are able to overcome the difficulties resulting from increase in labor costs by enhancing work efficiency through fabrication of prosthesis using 3D printing. With accurate fabrication being enabled, a given business area can be broadened to tailor-made prosthesis such as anaplastology. In this regard, the current study attempted to investigate the possibility of digital processing through special makeup molds and silicon patches designed using a FDM 3D printer, and the results are as follows: First, when a design modeled through the 3D graphics software 'ZBrush' was printed using a FDM 3D printer, the exact shape and surface texture which were observed on the computer monitor could be exactly obtained. Second, negative molds fabricated with flexible TPU filament were easier to use and displayed a more complete silicon mold than PLA filament-based negative molds. Third, the support, which is a disadvantage of the 3D printer, it was able to align objects or split the molds in such a way so that no support was formed in the slicing program. Fourth, the shrinkage rate of the outputs acquired through PLA or TPU filament did not change the shape of the silicon molds. Fifth, the texture of the fine contours which was found in silicon molds varied depending upon the object alignment angle in the slicing program. They can also be viewed differently depending upon the angle of lighting. To use a 3D printer in the fabrication of special makeup molds, therefore, it is necessary to examine how to fabricate them easily by concealing contours as much possible. It is also necessary to analyze the images acquired after attaching the colored silicon patches and check their availability.

Anisotrpic radar crosshole tomography and its applications (이방성 레이다 시추공 토모그래피와 그 응용)

  • Kim Jung-Ho;Cho Seong-Jun;Yi Myeong-Jong
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2005.09a
    • /
    • pp.21-36
    • /
    • 2005
  • Although the main geology of Korea consists of granite and gneiss, it Is not uncommon to encounter anisotropy Phenomena in crosshole radar tomography even when the basement is crystalline rock. To solve the anisotropy Problem, we have developed and continuously upgraded an anisotropic inversion algorithm assuming a heterogeneous elliptic anisotropy to reconstruct three kinds of tomograms: tomograms of maximum and minimum velocities, and of the direction of the symmetry axis. In this paper, we discuss the developed algorithm and introduce some case histories on the application of anisotropic radar tomography in Korea. The first two case histories were conducted for the construction of infrastructure, and their main objective was to locate cavities in limestone. The last two were performed In a granite and gneiss area. The anisotropy in the granite area was caused by fine fissures aligned in the same direction, while that in the gneiss and limestone area by the alignment of the constituent minerals. Through these case histories we showed that the anisotropic characteristic itself gives us additional important information for understanding the internal status of basement rock. In particular, the anisotropy ratio defined by the normalized difference between maximum and minimum velocities as well as the direction of maximum velocity are helpful to interpret the borehole radar tomogram.

  • PDF