• Title/Summary/Keyword: financial machine learning

Search Result 145, Processing Time 0.038 seconds

Forecasting volatility index by temporal convolutional neural network (Causal temporal convolutional neural network를 이용한 변동성 지수 예측)

  • Ji Won Shin;Dong Wan Shin
    • The Korean Journal of Applied Statistics
    • /
    • v.36 no.2
    • /
    • pp.129-139
    • /
    • 2023
  • Forecasting volatility is essential to avoiding the risk caused by the uncertainties of an financial asset. Complicated financial volatility features such as ambiguity between non-stationarity and stationarity, asymmetry, long-memory, sudden fairly large values like outliers bring great challenges to volatility forecasts. In order to address such complicated features implicity, we consider machine leaning models such as LSTM (1997) and GRU (2014), which are known to be suitable for existing time series forecasting. However, there are the problems of vanishing gradients, of enormous amount of computation, and of a huge memory. To solve these problems, a causal temporal convolutional network (TCN) model, an advanced form of 1D CNN, is also applied. It is confirmed that the overall forecasting power of TCN model is higher than that of the RNN models in forecasting VIX, VXD, and VXN, the daily volatility indices of S&P 500, DJIA, Nasdaq, respectively.

KOSPI index prediction using topic modeling and LSTM

  • Jin-Hyeon Joo;Geun-Duk Park
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.7
    • /
    • pp.73-80
    • /
    • 2024
  • In this paper, we proposes a method to improve the accuracy of predicting the Korea Composite Stock Price Index (KOSPI) by combining topic modeling and Long Short-Term Memory (LSTM) neural networks. In this paper, we use the Latent Dirichlet Allocation (LDA) technique to extract ten major topics related to interest rate increases and decreases from financial news data. The extracted topics, along with historical KOSPI index data, are input into an LSTM model to predict the KOSPI index. The proposed model has the characteristic of predicting the KOSPI index by combining the time series prediction method by inputting the historical KOSPI index into the LSTM model and the topic modeling method by inputting news data. To verify the performance of the proposed model, this paper designs four models (LSTM_K model, LSTM_KNS model, LDA_K model, LDA_KNS model) based on the types of input data for the LSTM and presents the predictive performance of each model. The comparison of prediction performance results shows that the LSTM model (LDA_K model), which uses financial news topic data and historical KOSPI index data as inputs, recorded the lowest RMSE (Root Mean Square Error), demonstrating the best predictive performance.

Ensemble Learning with Support Vector Machines for Bond Rating (회사채 신용등급 예측을 위한 SVM 앙상블학습)

  • Kim, Myoung-Jong
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.2
    • /
    • pp.29-45
    • /
    • 2012
  • Bond rating is regarded as an important event for measuring financial risk of companies and for determining the investment returns of investors. As a result, it has been a popular research topic for researchers to predict companies' credit ratings by applying statistical and machine learning techniques. The statistical techniques, including multiple regression, multiple discriminant analysis (MDA), logistic models (LOGIT), and probit analysis, have been traditionally used in bond rating. However, one major drawback is that it should be based on strict assumptions. Such strict assumptions include linearity, normality, independence among predictor variables and pre-existing functional forms relating the criterion variablesand the predictor variables. Those strict assumptions of traditional statistics have limited their application to the real world. Machine learning techniques also used in bond rating prediction models include decision trees (DT), neural networks (NN), and Support Vector Machine (SVM). Especially, SVM is recognized as a new and promising classification and regression analysis method. SVM learns a separating hyperplane that can maximize the margin between two categories. SVM is simple enough to be analyzed mathematical, and leads to high performance in practical applications. SVM implements the structuralrisk minimization principle and searches to minimize an upper bound of the generalization error. In addition, the solution of SVM may be a global optimum and thus, overfitting is unlikely to occur with SVM. In addition, SVM does not require too many data sample for training since it builds prediction models by only using some representative sample near the boundaries called support vectors. A number of experimental researches have indicated that SVM has been successfully applied in a variety of pattern recognition fields. However, there are three major drawbacks that can be potential causes for degrading SVM's performance. First, SVM is originally proposed for solving binary-class classification problems. Methods for combining SVMs for multi-class classification such as One-Against-One, One-Against-All have been proposed, but they do not improve the performance in multi-class classification problem as much as SVM for binary-class classification. Second, approximation algorithms (e.g. decomposition methods, sequential minimal optimization algorithm) could be used for effective multi-class computation to reduce computation time, but it could deteriorate classification performance. Third, the difficulty in multi-class prediction problems is in data imbalance problem that can occur when the number of instances in one class greatly outnumbers the number of instances in the other class. Such data sets often cause a default classifier to be built due to skewed boundary and thus the reduction in the classification accuracy of such a classifier. SVM ensemble learning is one of machine learning methods to cope with the above drawbacks. Ensemble learning is a method for improving the performance of classification and prediction algorithms. AdaBoost is one of the widely used ensemble learning techniques. It constructs a composite classifier by sequentially training classifiers while increasing weight on the misclassified observations through iterations. The observations that are incorrectly predicted by previous classifiers are chosen more often than examples that are correctly predicted. Thus Boosting attempts to produce new classifiers that are better able to predict examples for which the current ensemble's performance is poor. In this way, it can reinforce the training of the misclassified observations of the minority class. This paper proposes a multiclass Geometric Mean-based Boosting (MGM-Boost) to resolve multiclass prediction problem. Since MGM-Boost introduces the notion of geometric mean into AdaBoost, it can perform learning process considering the geometric mean-based accuracy and errors of multiclass. This study applies MGM-Boost to the real-world bond rating case for Korean companies to examine the feasibility of MGM-Boost. 10-fold cross validations for threetimes with different random seeds are performed in order to ensure that the comparison among three different classifiers does not happen by chance. For each of 10-fold cross validation, the entire data set is first partitioned into tenequal-sized sets, and then each set is in turn used as the test set while the classifier trains on the other nine sets. That is, cross-validated folds have been tested independently of each algorithm. Through these steps, we have obtained the results for classifiers on each of the 30 experiments. In the comparison of arithmetic mean-based prediction accuracy between individual classifiers, MGM-Boost (52.95%) shows higher prediction accuracy than both AdaBoost (51.69%) and SVM (49.47%). MGM-Boost (28.12%) also shows the higher prediction accuracy than AdaBoost (24.65%) and SVM (15.42%)in terms of geometric mean-based prediction accuracy. T-test is used to examine whether the performance of each classifiers for 30 folds is significantly different. The results indicate that performance of MGM-Boost is significantly different from AdaBoost and SVM classifiers at 1% level. These results mean that MGM-Boost can provide robust and stable solutions to multi-classproblems such as bond rating.

A Smart Framework for Mobile Botnet Detection Using Static Analysis

  • Anwar, Shahid;Zolkipli, Mohamad Fadli;Mezhuyev, Vitaliy;Inayat, Zakira
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.6
    • /
    • pp.2591-2611
    • /
    • 2020
  • Botnets have become one of the most significant threats to Internet-connected smartphones. A botnet is a combination of infected devices communicating through a command server under the control of botmaster for malicious purposes. Nowadays, the number and variety of botnets attacks have increased drastically, especially on the Android platform. Severe network disruptions through massive coordinated attacks result in large financial and ethical losses. The increase in the number of botnet attacks brings the challenges for detection of harmful software. This study proposes a smart framework for mobile botnet detection using static analysis. This technique combines permissions, activities, broadcast receivers, background services, API and uses the machine-learning algorithm to detect mobile botnets applications. The prototype was implemented and used to validate the performance, accuracy, and scalability of the proposed framework by evaluating 3000 android applications. The obtained results show the proposed framework obtained 98.20% accuracy with a low 0.1140 false-positive rate.

The Singular Economy: End of the Digital/Physical Divide

  • Meceda, Ann M.;Vonortas, Nicholas S.
    • STI Policy Review
    • /
    • v.9 no.1
    • /
    • pp.133-157
    • /
    • 2018
  • The divide between the "digital" economy and the traditional "physical" economy is outdated. In fact, we are in a transition to a singular economy. This paper classifies economic objects (including actors) as either physical or virtual and argues that due to emerging technologies, these objects are interacting with each other in both physical and increasingly digital spheres in tandem. This paper recognizes the elemental difference between atoms and bytes but argues that physical and digital economic activities are becoming inseparably intertwined. Furthermore, arbitrarily dividing the economy into two categories - one "physical" and the other "digital" - distorts the overall view of the actual execution of economic activity. A wide range of innovations emerging concurrently is fueling the transition to a singular economy. Often referred to as the elements of the Fourth Industrial Revolution (4IR), four emerging technological areas are reviewed here: distributed ledger technology, artificial intelligence/machine learning/data sciences, biometrics and remote sensor technologies, and access infrastructure (universal internet access/electricity/cloud computing). The financial services sector is presented as a case study for the potential impact of these 4IR technologies and the blurring physical/digital line. To reach the potential of these innovations and a truly singular economy, it requires the concurrent development of social, organizational, and regulatory innovations, though they lag in terms of technological progress thus far.

A Time Series Graph based Convolutional Neural Network Model for Effective Input Variable Pattern Learning : Application to the Prediction of Stock Market (효과적인 입력변수 패턴 학습을 위한 시계열 그래프 기반 합성곱 신경망 모형: 주식시장 예측에의 응용)

  • Lee, Mo-Se;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.1
    • /
    • pp.167-181
    • /
    • 2018
  • Over the past decade, deep learning has been in spotlight among various machine learning algorithms. In particular, CNN(Convolutional Neural Network), which is known as the effective solution for recognizing and classifying images or voices, has been popularly applied to classification and prediction problems. In this study, we investigate the way to apply CNN in business problem solving. Specifically, this study propose to apply CNN to stock market prediction, one of the most challenging tasks in the machine learning research. As mentioned, CNN has strength in interpreting images. Thus, the model proposed in this study adopts CNN as the binary classifier that predicts stock market direction (upward or downward) by using time series graphs as its inputs. That is, our proposal is to build a machine learning algorithm that mimics an experts called 'technical analysts' who examine the graph of past price movement, and predict future financial price movements. Our proposed model named 'CNN-FG(Convolutional Neural Network using Fluctuation Graph)' consists of five steps. In the first step, it divides the dataset into the intervals of 5 days. And then, it creates time series graphs for the divided dataset in step 2. The size of the image in which the graph is drawn is $40(pixels){\times}40(pixels)$, and the graph of each independent variable was drawn using different colors. In step 3, the model converts the images into the matrices. Each image is converted into the combination of three matrices in order to express the value of the color using R(red), G(green), and B(blue) scale. In the next step, it splits the dataset of the graph images into training and validation datasets. We used 80% of the total dataset as the training dataset, and the remaining 20% as the validation dataset. And then, CNN classifiers are trained using the images of training dataset in the final step. Regarding the parameters of CNN-FG, we adopted two convolution filters ($5{\times}5{\times}6$ and $5{\times}5{\times}9$) in the convolution layer. In the pooling layer, $2{\times}2$ max pooling filter was used. The numbers of the nodes in two hidden layers were set to, respectively, 900 and 32, and the number of the nodes in the output layer was set to 2(one is for the prediction of upward trend, and the other one is for downward trend). Activation functions for the convolution layer and the hidden layer were set to ReLU(Rectified Linear Unit), and one for the output layer set to Softmax function. To validate our model - CNN-FG, we applied it to the prediction of KOSPI200 for 2,026 days in eight years (from 2009 to 2016). To match the proportions of the two groups in the independent variable (i.e. tomorrow's stock market movement), we selected 1,950 samples by applying random sampling. Finally, we built the training dataset using 80% of the total dataset (1,560 samples), and the validation dataset using 20% (390 samples). The dependent variables of the experimental dataset included twelve technical indicators popularly been used in the previous studies. They include Stochastic %K, Stochastic %D, Momentum, ROC(rate of change), LW %R(Larry William's %R), A/D oscillator(accumulation/distribution oscillator), OSCP(price oscillator), CCI(commodity channel index), and so on. To confirm the superiority of CNN-FG, we compared its prediction accuracy with the ones of other classification models. Experimental results showed that CNN-FG outperforms LOGIT(logistic regression), ANN(artificial neural network), and SVM(support vector machine) with the statistical significance. These empirical results imply that converting time series business data into graphs and building CNN-based classification models using these graphs can be effective from the perspective of prediction accuracy. Thus, this paper sheds a light on how to apply deep learning techniques to the domain of business problem solving.

TeGCN:Transformer-embedded Graph Neural Network for Thin-filer default prediction (TeGCN:씬파일러 신용평가를 위한 트랜스포머 임베딩 기반 그래프 신경망 구조 개발)

  • Seongsu Kim;Junho Bae;Juhyeon Lee;Heejoo Jung;Hee-Woong Kim
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.3
    • /
    • pp.419-437
    • /
    • 2023
  • As the number of thin filers in Korea surpasses 12 million, there is a growing interest in enhancing the accuracy of assessing their credit default risk to generate additional revenue. Specifically, researchers are actively pursuing the development of default prediction models using machine learning and deep learning algorithms, in contrast to traditional statistical default prediction methods, which struggle to capture nonlinearity. Among these efforts, Graph Neural Network (GNN) architecture is noteworthy for predicting default in situations with limited data on thin filers. This is due to their ability to incorporate network information between borrowers alongside conventional credit-related data. However, prior research employing graph neural networks has faced limitations in effectively handling diverse categorical variables present in credit information. In this study, we introduce the Transformer embedded Graph Convolutional Network (TeGCN), which aims to address these limitations and enable effective default prediction for thin filers. TeGCN combines the TabTransformer, capable of extracting contextual information from categorical variables, with the Graph Convolutional Network, which captures network information between borrowers. Our TeGCN model surpasses the baseline model's performance across both the general borrower dataset and the thin filer dataset. Specially, our model performs outstanding results in thin filer default prediction. This study achieves high default prediction accuracy by a model structure tailored to characteristics of credit information containing numerous categorical variables, especially in the context of thin filers with limited data. Our study can contribute to resolving the financial exclusion issues faced by thin filers and facilitate additional revenue within the financial industry.

Comparison of Models for Stock Price Prediction Based on Keyword Search Volume According to the Social Acceptance of Artificial Intelligence (인공지능의 사회적 수용도에 따른 키워드 검색량 기반 주가예측모형 비교연구)

  • Cho, Yujung;Sohn, Kwonsang;Kwon, Ohbyung
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.1
    • /
    • pp.103-128
    • /
    • 2021
  • Recently, investors' interest and the influence of stock-related information dissemination are being considered as significant factors that explain stock returns and volume. Besides, companies that develop, distribute, or utilize innovative new technologies such as artificial intelligence have a problem that it is difficult to accurately predict a company's future stock returns and volatility due to macro-environment and market uncertainty. Market uncertainty is recognized as an obstacle to the activation and spread of artificial intelligence technology, so research is needed to mitigate this. Hence, the purpose of this study is to propose a machine learning model that predicts the volatility of a company's stock price by using the internet search volume of artificial intelligence-related technology keywords as a measure of the interest of investors. To this end, for predicting the stock market, we using the VAR(Vector Auto Regression) and deep neural network LSTM (Long Short-Term Memory). And the stock price prediction performance using keyword search volume is compared according to the technology's social acceptance stage. In addition, we also conduct the analysis of sub-technology of artificial intelligence technology to examine the change in the search volume of detailed technology keywords according to the technology acceptance stage and the effect of interest in specific technology on the stock market forecast. To this end, in this study, the words artificial intelligence, deep learning, machine learning were selected as keywords. Next, we investigated how many keywords each week appeared in online documents for five years from January 1, 2015, to December 31, 2019. The stock price and transaction volume data of KOSDAQ listed companies were also collected and used for analysis. As a result, we found that the keyword search volume for artificial intelligence technology increased as the social acceptance of artificial intelligence technology increased. In particular, starting from AlphaGo Shock, the keyword search volume for artificial intelligence itself and detailed technologies such as machine learning and deep learning appeared to increase. Also, the keyword search volume for artificial intelligence technology increases as the social acceptance stage progresses. It showed high accuracy, and it was confirmed that the acceptance stages showing the best prediction performance were different for each keyword. As a result of stock price prediction based on keyword search volume for each social acceptance stage of artificial intelligence technologies classified in this study, the awareness stage's prediction accuracy was found to be the highest. The prediction accuracy was different according to the keywords used in the stock price prediction model for each social acceptance stage. Therefore, when constructing a stock price prediction model using technology keywords, it is necessary to consider social acceptance of the technology and sub-technology classification. The results of this study provide the following implications. First, to predict the return on investment for companies based on innovative technology, it is most important to capture the recognition stage in which public interest rapidly increases in social acceptance of the technology. Second, the change in keyword search volume and the accuracy of the prediction model varies according to the social acceptance of technology should be considered in developing a Decision Support System for investment such as the big data-based Robo-advisor recently introduced by the financial sector.

Domain Knowledge Incorporated Local Rule-based Explanation for ML-based Bankruptcy Prediction Model (머신러닝 기반 부도예측모형에서 로컬영역의 도메인 지식 통합 규칙 기반 설명 방법)

  • Soo Hyun Cho;Kyung-shik Shin
    • Information Systems Review
    • /
    • v.24 no.1
    • /
    • pp.105-123
    • /
    • 2022
  • Thanks to the remarkable success of Artificial Intelligence (A.I.) techniques, a new possibility for its application on the real-world problem has begun. One of the prominent applications is the bankruptcy prediction model as it is often used as a basic knowledge base for credit scoring models in the financial industry. As a result, there has been extensive research on how to improve the prediction accuracy of the model. However, despite its impressive performance, it is difficult to implement machine learning (ML)-based models due to its intrinsic trait of obscurity, especially when the field requires or values an explanation about the result obtained by the model. The financial domain is one of the areas where explanation matters to stakeholders such as domain experts and customers. In this paper, we propose a novel approach to incorporate financial domain knowledge into local rule generation to provide explanations for the bankruptcy prediction model at instance level. The result shows the proposed method successfully selects and classifies the extracted rules based on the feasibility and information they convey to the users.

Verification Test of High-Stability SMEs Using Technology Appraisal Items (기술력 평가항목을 이용한 고안정성 중소기업 판별력 검증)

  • Jun-won Lee
    • Information Systems Review
    • /
    • v.20 no.4
    • /
    • pp.79-96
    • /
    • 2018
  • This study started by focusing on the internalization of the technology appraisal model into the credit rating model to increase the discriminative power of the credit rating model not only for SMEs but also for all companies, reflecting the items related to the financial stability of the enterprises among the technology appraisal items. Therefore, it is aimed to verify whether the technology appraisal model can be applied to identify high-stability SMEs in advance. We classified companies into industries (manufacturing vs. non-manufacturing) and the age of company (initial vs. non-initial), and defined as a high-stability company that has achieved an average debt ratio less than 1/2 of the group for three years. The C5.0 was applied to verify the discriminant power of the model. As a result of the analysis, there is a difference in importance according to the type of industry and the age of company at the sub-item level, but in the mid-item level the R&D capability was a key variable for discriminating high-stability SMEs. In the early stage of establishment, the funding capacity (diversification of funding methods, capital structure and capital cost which taking into account profitability) is an important variable in financial stability. However, we concluded that technology development infrastructure, which enables continuous performance as the age of company increase, becomes an important variable affecting financial stability. The classification accuracy of the model according to the age of company and industry is 71~91%, and it is confirmed that it is possible to identify high-stability SMEs by using technology appraisal items.