• 제목/요약/키워드: financial machine learning

검색결과 145건 처리시간 0.031초

SVM 기반의 재무 정보를 이용한 주가 예측 (SVM based Stock Price Forecasting Using Financial Statements)

  • 허준영;양진용
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제21권3호
    • /
    • pp.167-172
    • /
    • 2015
  • 기계 학습은 컴퓨터를 학습시켜 분류나 예측에 사용되는 기술이다. 그 중 SVM은 빠르고 신뢰할 만한 기계 학습 방법으로 분류나 예측에 널리 사용되고 있다. 본 논문에서는 재무 정보를 기반으로 SVM을 이용하여 주식 가격의 예측력을 검증한다. 이를 통해 회사의 내재 가치를 나타내는 재무정보가 주식 가격 예측에 얼마나 효과적인지를 평가할 수 있다. 회사 재무 정보를 SVM의 입력으로 하여 주가의 상승이나 하락 여부를 예측한다. 다른 기법과의 비교를 위해 전문가 점수와 기계 학습방법인 인공신경망, 결정트리, 적응형부스팅을 통한 예측 결과와 비교하였다. 비교 결과 SVM의 성능이 실행 시간이나 예측력면에서 모두 우수하였다.

Deep Learning-based Delinquent Taxpayer Prediction: A Scientific Administrative Approach

  • YongHyun Lee;Eunchan Kim
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제18권1호
    • /
    • pp.30-45
    • /
    • 2024
  • This study introduces an effective method for predicting individual local tax delinquencies using prevalent machine learning and deep learning algorithms. The evaluation of credit risk holds great significance in the financial realm, impacting both companies and individuals. While credit risk prediction has been explored using statistical and machine learning techniques, their application to tax arrears prediction remains underexplored. We forecast individual local tax defaults in Republic of Korea using machine and deep learning algorithms, including convolutional neural networks (CNN), long short-term memory (LSTM), and sequence-to-sequence (seq2seq). Our model incorporates diverse credit and public information like loan history, delinquency records, credit card usage, and public taxation data, offering richer insights than prior studies. The results highlight the superior predictive accuracy of the CNN model. Anticipating local tax arrears more effectively could lead to efficient allocation of administrative resources. By leveraging advanced machine learning, this research offers a promising avenue for refining tax collection strategies and resource management.

확률론적 최적제어와 기계학습을 이용한 동적 트레이딩 전략에 관한 고찰 (Investigations on Dynamic Trading Strategy Utilizing Stochastic Optimal Control and Machine Learning)

  • 박주영;양동수;박경욱
    • 한국지능시스템학회논문지
    • /
    • 제23권4호
    • /
    • pp.348-353
    • /
    • 2013
  • 최근들어, 확률론적 최적제어를 포함한 제어이론과 각종 기계학습 기반 인공지능 방법론은 금융공학 분야의 주요 도구로 자리를 잡아 가고 있다. 본 논문에서는 평균회귀 현상을 보이는 시장을 위한 페어 트레이딩 전략 분야와 추세 추종형 트레이딩 전략 분야에 대해 확률론적 최적제어 이론을 활용한 최신 논문 몇 편을 간단히 살펴보고, 보다 융통성 있고 접근성이 좋은 도구를 확보하기 위하여 확률론적 최적제어이론과 기계학습 기법을 동시에 응용하는 전략을 고려한다. 예시를 위하여 실시한 시뮬레이션은 본 논문에서 고려한 전략이 실제 금융시장 데이터를 대상으로 적용될 때 고무적인 결과를 제공할 수 있음을 보여준다.

SVM을 이용한 VKOSPI 일 중 변화 예측과 실제 옵션 매매에의 적용 (VKOSPI Forecasting and Option Trading Application Using SVM)

  • 라윤선;최흥식;김선웅
    • 지능정보연구
    • /
    • 제22권4호
    • /
    • pp.177-192
    • /
    • 2016
  • 기계학습(Machine Learning)은 인공 지능의 한 분야로, 데이터를 이용하여 기계를 학습시켜 기계 스스로가 데이터 분석 및 예측을 하게 만드는 것과 관련한 컴퓨터 과학의 한 영역을 일컫는다. 그중에서 SVM(Support Vector Machines)은 주로 분류와 회귀 분석을 목적으로 사용되는 모델이다. 어느 두 집단에 속한 데이터들에 대한 정보를 얻었을 때, SVM 모델은 주어진 데이터 집합을 바탕으로 하여 새로운 데이터가 어느 집단에 속할지를 판단해준다. 최근 들어서 많은 금융전문가는 기계학습과 막대한 데이터가 존재하는 금융 분야와의 접목 가능성을 보며 기계학습에 집중하고 있다. 그러면서 각 금융사는 고도화된 알고리즘과 빅데이터를 통해 여러 금융업무 수행이 가능한 로봇(Robot)과 투자전문가(Advisor)의 합성어인 로보어드바이저(Robo-Advisor) 서비스를 발 빠르게 제공하기 시작했다. 따라서 현재의 금융 동향을 고려하여 본 연구에서는 기계학습 방법의 하나인 SVM을 활용하여 매매성과를 올리는 방법에 대해 제안하고자 한다. SVM을 통한 예측대상은 한국형 변동성지수인 VKOSPI이다. VKOSPI는 금융파생상품의 한 종류인 옵션의 가격에 영향을 미친다. VKOSPI는 흔히 말하는 변동성과 같고 VKOSPI 값은 옵션의 종류와 관계없이 옵션 가격과 정비례하는 특성이 있다. 그러므로 VKOSPI의 정확한 예측은 옵션 매매에서의 수익을 낼 수 있는 중요한 요소 중 하나이다. 지금까지 기계학습을 기반으로 한 VKOSPI의 예측을 다룬 연구는 없었다. 본 연구에서는 SVM을 통해 일 중의 VKOSPI를 예측하였고, 예측 내용을 바탕으로 옵션 매매에 대한 적용 가능 여부를 실험하였으며 실제로 향상된 매매 성과가 나타남을 증명하였다.

머신러닝을 활용한 코스닥 관리종목지정 예측 (Predicting Administrative Issue Designation in KOSDAQ Market Using Machine Learning Techniques)

  • 채승일;이동주
    • 아태비즈니스연구
    • /
    • 제13권2호
    • /
    • pp.107-122
    • /
    • 2022
  • Purpose - This study aims to develop machine learning models to predict administrative issue designation in KOSDAQ Market using financial data. Design/methodology/approach - Employing four classification techniques including logistic regression, support vector machine, random forest, and gradient boosting to a matched sample of five hundred and thirty-six firms over an eight-year period, the authors develop prediction models and explore the practicality of the models. Findings - The resulting four binary selection models reveal overall satisfactory classification performance in terms of various measures including AUC (area under the receiver operating characteristic curve), accuracy, F1-score, and top quartile lift, while the ensemble models (random forest and gradienct boosting) outperform the others in terms of most measures. Research implications or Originality - Although the assessment of administrative issue potential of firms is critical information to investors and financial institutions, detailed empirical investigation has lagged behind. The current research fills this gap in the literature by proposing parsimonious prediction models based on a few financial variables and validating the applicability of the models.

Modern Probabilistic Machine Learning and Control Methods for Portfolio Optimization

  • Park, Jooyoung;Lim, Jungdong;Lee, Wonbu;Ji, Seunghyun;Sung, Keehoon;Park, Kyungwook
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제14권2호
    • /
    • pp.73-83
    • /
    • 2014
  • Many recent theoretical developments in the field of machine learning and control have rapidly expanded its relevance to a wide variety of applications. In particular, a variety of portfolio optimization problems have recently been considered as a promising application domain for machine learning and control methods. In highly uncertain and stochastic environments, portfolio optimization can be formulated as optimal decision-making problems, and for these types of problems, approaches based on probabilistic machine learning and control methods are particularly pertinent. In this paper, we consider probabilistic machine learning and control based solutions to a couple of portfolio optimization problems. Simulation results show that these solutions work well when applied to real financial market data.

그래디언트 부스팅 모델을 활용한 상점 매출 예측 (Store Sales Prediction Using Gradient Boosting Model)

  • 최재영;양희윤;오하영
    • 한국정보통신학회논문지
    • /
    • 제25권2호
    • /
    • pp.171-177
    • /
    • 2021
  • 최근 머신러닝의 발전에 따라 일상생활과 산업에서 기술을 적용하는 사례들이 많아지고 있다. 금융 데이터와 머신러닝 기법을 활용한 연구 또한 활발하게 이루어지고 있다. 본 논문은 이러한 동향에 따라 상점 매출 데이터에 머신러닝 기법을 접목해 매출 예측 모델을 구축, 핀테크 산업에서의 활용 방안을 제시한다. 다양한 결측치 처리 기법을 적용하고 그래디언트 부스팅 기반의 머신러닝 기법인 XGBoost, LightGBM, CatBoost를 사용하여 각 모델의 상점 매출예측 성능을 비교한다. 연구 결과, 단일대체법 중 중앙값 대체법을 사용한 데이터셋에 XGBoost를 활용해 예측을 진행한 모델의 성능이 가장 우수했다. 연구를 통해 얻은 모델을 이용하여 상점의 매출 예측을 진행함으로서 핀테크 기업의 고객 상점들은 대출금을 상환하기 전 금융 보조를 받는 근거로, 핀테크 기업은 상환 가능성이 높은 우수 상점에 금융 상품을 제공하는 등 기업과 고객 모두에게 긍정적인 방향으로 활용할 수 있다.

Stock Price Prediction and Portfolio Selection Using Artificial Intelligence

  • Sandeep Patalay;Madhusudhan Rao Bandlamudi
    • Asia pacific journal of information systems
    • /
    • 제30권1호
    • /
    • pp.31-52
    • /
    • 2020
  • Stock markets are popular investment avenues to people who plan to receive premium returns compared to other financial instruments, but they are highly volatile and risky due to the complex financial dynamics and poor understanding of the market forces involved in the price determination. A system that can forecast, predict the stock prices and automatically create a portfolio of top performing stocks is of great value to individual investors who do not have sufficient knowledge to understand the complex dynamics involved in evaluating and predicting stock prices. In this paper the authors propose a Stock prediction, Portfolio Generation and Selection model based on Machine learning algorithms, Artificial neural networks (ANNs) are used for stock price prediction, Mathematical and Statistical techniques are used for Portfolio generation and Un-Supervised Machine learning based on K-Means Clustering algorithms are used for Portfolio Evaluation and Selection which take in to account the Portfolio Return and Risk in to consideration. The model presented here is limited to predicting stock prices on a long term basis as the inputs to the model are based on fundamental attributes and intrinsic value of the stock. The results of this study are quite encouraging as the stock prediction models are able predict stock prices at least a financial quarter in advance with an accuracy of around 90 percent and the portfolio selection classifiers are giving returns in excess of average market returns.

전통적인 통계와 기계학습 기반 중국 문화산업 기업의 재무적 곤경 예측모형 연구 (Research on Financial Distress Prediction Model of Chinese Cultural Industry Enterprises Based on Machine Learning and Traditional Statistical)

  • 원도;왕콘;란희;배기형
    • 한국콘텐츠학회논문지
    • /
    • 제22권2호
    • /
    • pp.545-558
    • /
    • 2022
  • 본 연구의 목적은 전통적인 통계과 기계학습(Machine Learning)을 통해 중국 문화산업 기업의 재무적 곤경을 정확하게 예측하는 분석 모형을 탐색하는 데 있다. 예측모형을 구축하기 위하여 중국 128개 문화산업상장 기업의 데이터를 수집하였다. 25개 설명변수로 이뤄진 데이터베이스를 토대로 판별분석과 로지스틱 회귀(Logistic) 등 전통적인 통계 방법과 서포트 벡터 기계(SVM), 결정 트리(Decision Tree)와 랜덤 포레스트(Random Forest) 등 기계학습을 이용한 예측모형을 구축하고 각 모형의 성능 평가를 위해 Python 소프트웨어를 사용한다. 분석 결과, 예측 성능이 가장 좋은 모형은 랜덤 포레스트(Random Forest) 모형으로 95%의 정확도를 보였다. 그 다음은 서포트 벡터 기계(SVM) 모형으로 93%의 정확도를 보였다. 그 다음은 결정 트리(Decision Tree) 모형으로 92%의 정확도를 보였다. 그 다음은 판정분석 모형으로 89%의 정확도를 보였다. 예측 효과가 가장 낮은 모형은 로지스틱 회귀(Logistic) 모형으로 88%의 정확도를 보였다. 이는 중국 문화산업 기업의 재무적 곤경을 예측하면서 기계학습 모형이 전통적인 통계 모형보다 더 좋은 예측 효과를 얻을 수 있음을 설명한다.

Using Machine Learning Algorithms for Housing Price Prediction: The Case of Islamabad Housing Data

  • Imran, Imran;Zaman, Umar;Waqar, Muhammad;Zaman, Atif
    • Soft Computing and Machine Intelligence
    • /
    • 제1권1호
    • /
    • pp.11-23
    • /
    • 2021
  • House price prediction is a significant financial decision for individuals working in the housing market as well as for potential buyers. From investment to buying a house for residence, a person investing in the housing market is interested in the potential gain. This paper presents machine learning algorithms to develop intelligent regressions models for House price prediction. The proposed research methodology consists of four stages, namely Data Collection, Pre Processing the data collected and transforming it to the best format, developing intelligent models using machine learning algorithms, training, testing, and validating the model on house prices of the housing market in the Capital, Islamabad. The data used for model validation and testing is the asking price from online property stores, which provide a reasonable estimate of the city housing market. The prediction model can significantly assist in the prediction of future housing prices in Pakistan. The regression results are encouraging and give promising directions for future prediction work on the collected dataset.