• Title/Summary/Keyword: fin tube

Search Result 466, Processing Time 0.029 seconds

Numerical Analysis of the Heat and Mass Transfer in a Fin Tube Type Adsorber (핀튜브형 흡착탑에서 열 및 물질전달 수치해석)

  • Kwon, Oh Kyung;Chung, Jae Dong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.8
    • /
    • pp.457-463
    • /
    • 2013
  • Nowadays, adsorption chillers have been receiving considerable attention, as they are energy saving and environmentally benign systems. A fin tube type heat exchanger in which adsorption/desorption takes place is required with more compact size. The adsorption chiller is expected to have high energy efficiency in utilizing the waste heat exhausted from a process. The objectives of this paper are to scrutinize the effect of design parameters on the adsorption performance, especially the fin pitch of the fin tube, and to develop an optimal design fin tube heat exchanger in a silica gel/water adsorption chiller. From the numerical results, the fin pitch of 2.5 mm shows the highest adsorption rate, compared to other fin pitches, such as 5 mm, 7.5 mm and 10mm. Also, the adsorption rate is affected by the cooling water and hot water temperature.

A Study on the Thermal Performance of Fin and Tube Sensible Heat Exchanger according to Fin Geometry and Flowrate (휜 형상 및 유량에 따른 휜-관 현열 열교환기의 전열성능에 관한 연구)

  • Lee, Min-Su;Jeon, Chang-Duk;Lee, Jin-Ho
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.402-407
    • /
    • 2008
  • This study is performed to investigate heat transfer characteristics for thermal performance of fin-and-tube sensible heat exchangers under the low air flowrate according to fin geometry combination and coolant flowrate control. Fins and tubes of samples were separated between front row and rear row. Experiment results are plotted heat transfer rate of each row, heat transfer coefficient and sensible heat ratio against water flowrate control of each row. It is observed that thermal performance can be enhanced by fin geometry combination and water flowrate control of each row under the low air flowrate.

  • PDF

VERIFICATION OF FIN EFFICIENCY THEORY FOR THE CIRCULAR FINNED-TUBE HEAT EXCHANGER BY NUMERICAL EXPERIMENT (원형휜-원형관 열교환기의 휜효율 이론에 관한 수치적 검증)

  • Kang, H.C.;Lim, B.B.;Lee, J.H.
    • Journal of computational fluids engineering
    • /
    • v.14 no.4
    • /
    • pp.7-12
    • /
    • 2009
  • The purpose of the present study is to investigate the convective heat transfer characteristics and the validity of fin efficiency of the circular finned-tube heat exchanger by using commercial CFD code. The heat transfer coefficient obtained by using the laminar model was 22% overestimated to the experimental data. The fin surface temperature compared with the experimental data measured by the liquid crystal method. The fin efficiency by the present numerical experiment, defined as normalized and averaged fin surface temperature, was greater than the theoretical fin efficiency and the difference is increased at high value of the factor $mr{\phi}$.

Heat Transfer and Friction Characteristics of Louver Fin and Tube Heat Exchangers under Wet Conditions (루버핀-관 열교환기의 습조건에서의 열전달 및 마찰특성에 대한 실험 연구)

  • Kwon, Young Chul;Chang, Keun Sun
    • Applied Chemistry for Engineering
    • /
    • v.19 no.1
    • /
    • pp.73-79
    • /
    • 2008
  • An experimental study was conducted to investigate the effect of a tube row, a fin pitch and an inlet humidity on air-side heat and mass transfer performance of louvered fin-tube heat exchangers under wet conditions. Experimental conditions were varied by three fin pitches, two rows, two inlet relative humidities. Experimental results showed that the heat transfer performance decreased and the friction increased with the decrease of fin pitch, for 2 row heat exchanger. The effect of fin pitch on heat transfer performance was negligible with 3 row heat exchanger. The changes in relative humidity was not affected heat transfer and friction. However, the mass transfer performance was slightly decreased with the increase of relative humidity and with the decrease of fin pitch. The mass transfer performance of the louvered fin-tube heat exchanger decreased with the decrease of the fin pitch and was different according to the number of tube row.

An Experimental study on Heat Characteristics of Horizontal Tubes with Fin in Fluidized Bed Combustor (유동층 연소로 내에서 수평 휜 전열관의 열전달 특성에 관한 실험적 연구)

  • Kang, Hyung-Soo;Chung, Tae-Yong
    • Journal of the Korean Society of Combustion
    • /
    • v.1 no.1
    • /
    • pp.19-29
    • /
    • 1996
  • This study is to investigate the characteristics of heat transfer of a horizontal tube, with radial fins of various configuration, immersed in a high temperature fluidized bed. The experimental heat transfer variation is compared with that of a smooth tube. The finned tubes and smooth tube, with outside and inside diameter of 48.6mm and 30.6mm, are made of steel tubes. The depth of the fin is 5mm, the rake angles of fin are $25^{\circ},\;35^{\circ},\;45^{\circ}$ and the widthes of fin for each rake angle are 0mm, 1mm, 2mm and 3mm. A bed temperature is fixed at $880\;{\pm}\;10^{\circ}C$. A granular refractory(silica sand) is used as a bed material with mean particle diameters of 1.22mm and 1.54mm. The maximum heat transfer coefficient is achieved with the rake angle of $25^{\circ}$ and the width of 0mm for the mean particle size 1.22mm. The coefficient is 2.14 times larger than that for a smooth tube. The rake angle for the maximum heat transfer coefficient depends on the particle size of bed material. Also the transfer coefficient decreases as the width of fin increases.

  • PDF

Condensation heat transfer characteristics of R-22 and R-407C in micro-fin tubes (마이크로핀관에서의 냉매 R-22, R-407C의 응축전열특성에 관한 연구)

  • Roh, Geon-Sang
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.1
    • /
    • pp.50-56
    • /
    • 2008
  • Experimental results for forced convection condensation of Refrigerant-22 and ternary Refrigerant-407C(HFC-32/125/134a 23/25/52 wt%) which is being considered as a substitute R-22 inside a horizontal micro-fin tube are presented. The test section was horizontal double-tube counterflow condenser with a length 4,000 mm micro-fin tube, having 8.53 mm ID, 0.2 mm fin height and 60 fins. The range of parameters of mass velocity were varied from 102.1 to 301.0 kg/(m2.s) and inlet quality 1.0. At the given experimental conditions. the average heat transfer coefficients for R-407C were lower than that for R-22 at a micro-fin tube. Over the mass velocity range tested. the PF(penalty factor) for R-22, R-407C were lower than the increasing ratio of heat transfer area by fins, and the EF(enhancement factor) for R-22, R-407C were higher than the increasing ratio of heat transfer area by fins.

A Study on the Improvement of the Water System in Domestic Boiler (가정용 보일러의 급탕시설 개선방안에 관한 연구)

  • Han, Gyu-Il;Park, Jong-Un
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.34 no.2
    • /
    • pp.200-211
    • /
    • 1998
  • Heat transfer performance improvement by fin and groovs is studied for condensation of R-11 on integral-fin tubes. Eight tubes with trapczodially shaped integral-fins having fin density from 748 to 1654fpm(fin per meter) and 10, 30 grooves are tested. A plain tube having the same diameter as the finned tubes is also used for comparison. R-11 condensates at saturation state of 32 $^{\circ}C$ on the outside tube surface coded by inside water flow. All of test data are taken at steady state. The heat transfer loop is used for testing singe long tubes and cooling is pumped from a storage tank through filters and folwmeters to the horizontal test section where it is heated by steam condensing on the outside of the tubes. The pressure drop across the test section is measured by menas pressure gauge and manometer. The results obtained in this study is as follows : 1. Based on inside diameter and nominal inside area, overall heat transfer coefficients of finned tube are enhanced up to 1.6 ~ 3.7 times that of a plain tube at a constant Reynolds number. 2. Friction factors are up to 1.6 ~ 2.1 times those of plain tubes. 3. The constant pumping power ratio for the low integral-fin tubes increase directly with the effective area to the nominal area ratio, and with the effective area diameter ratio. 4. A tube having a fin density of 1299fpm and 30 grooves has the best heat transfer performance.

  • PDF

The Analysis of Stress Behavior in welded interface and interface crack of High Frequency Pressure welding of Dissimilar materials for Fin-Tube (Fin-Tube 이종재의 고주파 압접 접합계면 및 계면균열 응력해석)

  • 김도형;이동진;오환섭
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.380-385
    • /
    • 2000
  • In this study, geometric shape and crack in welded interface of the air cooled heat exchanger Fin-Tube of Dissimilar Meterials was analysed. The object of study is to understand the behavior of Stress Intensity Factor for fin length, flash thickness, flash length, symmetric and asymmetric cracks of comming from the manufacturing process. Stress Intensity Factor was analysed by BEM. Kelvin's solution was used as a fundamental solution in BEM analysis and stress extrapolation method was used to determine Stress Intensity Factor.

  • PDF

Comparison of Performance Characteristics with Heat Exchanger Type in $CO_2$ Cycle (이산화탄소 사이클에서 열교환기의 형태 변화에 따른 성능특성 비교)

  • Bae, Kyung-Jin;Cho, Hong-Hyun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.10
    • /
    • pp.657-664
    • /
    • 2010
  • The theoretical analysis of performance characteristics in a $CO_2$ cycle with the heat exchanger type was carried out. The size and performance of the fin-tube and microchannel heat exchanger were compared with operating conditions. As a result, the performance of the fin-tube gascooler and evaporator were more sensitive to the variation of operating condition compared to that of the microchannel gascooler and evaporator. Beside, the sizes of microchannel gascooler and evaporator could be decreased by 73% and 76%, respectively, compared to those of the fin-tube type gascooler and evaporator with the similar capacity. The COP and reliability of the $CO_2$ system can be increased by using a microchannel heat exchanger.

An Experimental Study of the Airside Performance of Slit Fin-and-Tube Heat Exchangers under Dry and Wet Conditions

  • Chang, Keun-Sun;Long, Phan-Than
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.17 no.1
    • /
    • pp.7-14
    • /
    • 2009
  • Water condensate accumulated on the surface of a fin-and-tube heat exchanger significantly affects its thermal and hydraulic performances. The purpose of this study is to investigate the effects of condensate retention on the air-side heat transfer performance and flow friction for various flow and geometric conditions. Total of twelve samples of slit and plate fin-and-tube heat exchangers are tested under dry and wet conditions. The thermal fluid measurements are made using a psychrometric calorimeter. Frontal air velocity varies in the range from 0.7 m/s to 1.5 m/s. Using the experimental data, presented are heat transfer coefficients in terms of Colburn j-factors and friction factors, and these data are compared with the existing correlations.