• Title/Summary/Keyword: fin tube

Search Result 466, Processing Time 0.03 seconds

Pool boiling heat transfer coefficients of alternative refrigerants on low fin tubes (낮은 핀관에서 대체냉매의 풀비등 열전달계수)

  • 송길홍;이준강;정동수;김종보
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.4
    • /
    • pp.411-422
    • /
    • 1998
  • In this study, experiments were carried out to provide nucleate pool boiling heat transfer data for a plain tube and 4 different low fin tubes employing 2 refrigerant mixtures of R410A, R407C, and 12 pure fluids. Low fin tubes were machined on a 19.05mm nominal outside diameter copper block according to the manufacturer's low fin tube specifications. Cartridge heaters were used to generate uniform heat flux on the tubes. For all refrigerants, heat flux varied from 10㎾/$\m^2$ to 80㎾/$\m^2$. It is found that heat transfer coefficients(HTCs) of high vapor pressure refrigerants are usually higher than those of low pressure fluids. On the other hand, the fin effect was more prominent with low pressure refrigerants than with high pressure ones. Optimum fin density as well as the increase in heat transfer coefficient with the increase in fin density were found to be strongly fluid dependent. HTCs of Rl23, a low pressure alternative refrigerant, were similar to those of Rll while HTCs of R134a, an intermediate pressure alternative refrigerant, were roughly 20% higher than those of Rl2. Finally, HTCs of R32, R125, R143a, and R410A were all higher than those of R22 by 30~50%.

  • PDF

A Study on the Condensation Heat Transfer of Low Integral Fin Tubes (낮은 핀 관의 응축 열전달 성능에 관한 연구)

  • Han, Gyu-Il;Park, Seong-Guk
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.32 no.1
    • /
    • pp.67-77
    • /
    • 1996
  • The heat transfer performance of R - 11 vapor condensing on integral fin tubes has been studied using fin tubes having the fin density from 748 to 1654 fins per meter. Electric heater supplied heat energy to the boiler to generate R - 11 vapor over the range of 25-60W. Condensation rates of each tubes were tested under the condition of cooling water flow rate from 400l/h to 2500l/h. For the seven fin tubes tested, the best performance has been obtained with a tube having a fin density of 1417fpm and a fin height of 1.3mm. This tube has yielded a maximum value of the heat transfer coefficient of 16500W/$m_2$K, at a vapor to wall temperature difference of 3K. Experimental results of integral fin tubes have been compared with available predictive models such as Beatty - Katz's analysis, Webb's analysis, Sukhatme's analysis and Rudy's empirical relation. The experimental results were shown to be in good agreement with that of the Sukhatme's analysis.

  • PDF

Forced Convection Characteristics of V type Circular-finned Tube Heat Exchanger (V형 원형휜-원형관의 강제대류 열유동 특성)

  • Lee, Jong-Hwi;Lim, Mu-Gi;Kang, Hie-Chan
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1348-1354
    • /
    • 2009
  • The purpose of the present study is to investigate the flow resistance and the heat transfer characteristics of V type circular fin-tube heat exchanger. Four kinds of V type fin having the same fin area and the different span wise angle tested numerically. Test data for the heat transfer, pressure drop and fin temperature were shown and discussed. The pressure drop and heat transfer increased for decreasing the span wise angle up to 58% and 25% respectively.

  • PDF

Performance evaluation of PF-condenser adapted to Large Size air-conditioner (대형 에어컨에 적용된 PF열교환기의 성능평가)

  • Cho, J.P.;Choi, Y.H.;Kim, J.H.;Kim, N.H.;Kim, J.H.
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.1-6
    • /
    • 2000
  • In this study, We evaluated the Performance of PFC and the system performance of large size air-conditioner applying to outdoor condenser. PFC can meet the same cooling capacity in 40.42% of volume to fin-tube condenser. Although the fin-tube condenser requires 3600g of refrigerant charging, PFC requires 1700g, 1800g, 1900g, 2000g refrigerant charging for each 2.0mm, 2.5mm, 3.0mm and 3.5mm fin pitches. Difference of condensing and evaporation pressure is the biggest point 2.0mm fin pitch and the smallest point 2.5mm fin pitch.

  • PDF

Measurement of the Thermal Characteristics of Finned-tube Heat Exchanger Fin by Using the Liquid Crystal Technique

  • Kang, Hie-Chan;Kim, Moo-Hwan
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.9 no.2
    • /
    • pp.28-35
    • /
    • 2001
  • This study deals with the thermal characteristics of finned-tube heat exchanger having two rows used in the air-conditioning application. Pressure drop and heat transfer coefficient were measured by using the three times models of plain fin and compared with the theory. Also the temperature distribution and heat conduction in the fin was measured by using the liquid crystal method. The surface temperature of rear row was nearly constant, and heat conduction in the fin was stronger near the front row than the rear row.

  • PDF

Forced Convection Characteristics of V shape Circular fin-tube Heat Exchanger (V형 원형휜-원형관의 강제대류 열유동 특성)

  • Lee, Jong-Hwi;Lim, Moo-Gi;Kang, Hie-Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.12
    • /
    • pp.649-655
    • /
    • 2009
  • The purpose of the present study is to investigate the flow resistances and heat transfer characteristics of V-shaped circular fin-tube heat exchangers. Four types of V-shaped fins in which the fin areas are identical but the areas of the V-shaped portion are different have been tested numerically. The results obtained for heat transfer, pressure drop, and fin temperature are discussed in this paper. With increase in the area of the V-shaped portion, the pressure drop and heat transfer increase up to 40% and 24%, respectively, in the present test range.

Effects of Oil and Internally Finned Tubes on the Performance of the Air-Conditioning Unit (전열관 형상과 냉동기유 효과를 고려한 공조기기의 성능예측)

  • Yun, J.Y.;Lee, K.S.;Lee, D.J.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.6 no.4
    • /
    • pp.388-398
    • /
    • 1994
  • Computer simulation model for predicting more accurately the heat transfer performance of the evaporator and condenser which have significantly affected on the performance of air-conditioner has been suggested. In this model oil and micro-fin tube used in a actual unit are considered to simulate the more realistic case. The effects of oil and micro-fin tube on the performance of an air-conditioner have been investigated. It is found that the present model requires higher pressure than the existing model due to the characteristics of the tube considered. However, it turns out that the present model is very close to an actual cycle. As the amount of oil inside the tube increases, condensation heat transfer coefficient shows a linear decrease irrespective of a kind of oil, while evaporation heat transfer coefficient increases slightly in the oil with low viscosity and decreases exponentially in the oil with high viscosity. Pressure drop in both evaporator and condenser increases linearly irrespective of a kind of oil. It is also found that the effect of the variation of oil concentration on the magnitude of two-phase region is negligible.

  • PDF

Condensing Performance Evaluation in Smooth and Micro-Fin Tubes for Natural Mixture Refrigerant (Propane/Butane) (프로판/부탄 혼합자연냉매의 평활관과 마이크로핀관 내의 응축성능평가)

  • Lee Sang-Mu;Lee Joo-Dong;Park Byung-Duck
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.9
    • /
    • pp.816-823
    • /
    • 2005
  • This paper deals with the heat exchange performance prediction of a counter flow type double-tube condenser for natural refrigerant mixtures composed of Propane/n-Butane or Propane/i-Butane in a smooth tube and a micro-fin tube. The local characteristics of heat transfer, mass transfer and pressure drop are calculated using a prediction method developed by the authors. The total pressure drop and the overall heat transfer coefficient are also evaluated on various heat exchange conditions. The calculated results of the natural refrigerant mixtures are compared with HCFC22. In conclusion, natural refrigerant mixtures composed of Propane/n-Butane or Propane/i-Butane are appropriate candidates for alternative refrigerant from the viewpoint of heat transfer characteristics.

Performance Evaluation of Finned Tube Heat Exchanger with Vortex Generators in a Low Reynolds Number Regime (레이놀즈 수가 낮은 영역에서 와류발생기를 적용한 핀-관 열교환기 성능평가)

  • Kwak Kyung-Min;Song Gil-Dal
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.2
    • /
    • pp.151-157
    • /
    • 2006
  • The present paper reports the method for evaluation of heat-transfer performance of finned tube heat exchangers in a low Reynolds number regime (Re = $160\~800$) and also reports the data of heat transfer and pressure loss taken from a finned tube heat exchanger with/without vortex generators (VGs) installed as a heat-transfer enhancement device. The evaluation is based on the modified single blow method conducted in a specially designed low Reynolds number duct. Three different test core geometries, i.e., fin only, fin-tube without VGs and that with VGs, are studied here. The data of heat transfer and pressure loss taken from the fin only geometry agree well with the empirical correlations, thus validating the present method as used for low Reynolds number regime. The data taken from the finned tube geometries with and without VGs are presented and compared to examine the effect of VGs in the low Reynolds number regime.

R-22 and R-410A Condensation in Flat Aluminum Multi-Channel Tubes (알루미늄 다채널 평판관내 R-22 및 R-410A 응축에 관한 연구)

  • Jung, Ho-Jong;Kim, Nae-Hyun;Yoon, Baek;Kim, Man-Hoi
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.7
    • /
    • pp.575-583
    • /
    • 2002
  • In this study, condensation heat transfer tests were conducted in flat aluminum multi-channel tubes using R-410A, and the results are compared with those of R-22. Two internal geometries were tested; one with a smooth inner surface and the other with micro-fins. Data are presented for the following range of variables; vapor quality (0.1~0.9), mass flux (200~600 kg/$m^2$s) and heat flux (5~15 ㎾/$m^2$). Results show that the effect of surface tension drainage on the fin surface is more pronounced for R-22 than R-410A. The smaller Weber number for R-22 may be responsible. For the smooth tube, the heat transfer coefficient of R-410A is slightly larger than that of R-22. For the micro-fin tube, however, the reverse is true. Possible reasoning is provided considering the physical properties of the refrigerants. For the smooth tube, a correlation of Akers et at. type predicts the data reasonably well. For the micro-fin tube, the Yang and Webb model was modified to correlate the present data.